Skip to main content
Log in

Mitochondrial, cell cycle control and neuritogenesis alterations in an iPSC-based neurodevelopmental model for schizophrenia

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Schizophrenia is a severe psychiatric disorder of neurodevelopmental origin that affects around 1% of the world’s population. Proteomic studies and other approaches have provided evidence of compromised cellular processes in the disorder, including mitochondrial function. Most of the studies so far have been conducted on postmortem brain tissue from patients, and therefore, do not allow the evaluation of the neurodevelopmental aspect of the disorder. To circumvent that, we studied the mitochondrial and nuclear proteomes of neural stem cells (NSCs) and neurons derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients versus healthy controls to assess possible alterations related to energy metabolism and mitochondrial function during neurodevelopment in the disorder. Our results revealed differentially expressed proteins in pathways related to mitochondrial function, cell cycle control, DNA repair and neuritogenesis and their possible implication in key process of neurodevelopment, such as neuronal differentiation and axonal guidance signaling. Moreover, functional analysis of NSCs revealed alterations in mitochondrial oxygen consumption in schizophrenia-derived cells and a tendency of higher levels of intracellular reactive oxygen species (ROS). Hence, this study shows evidence that alterations in important cellular processes are present during neurodevelopment and could be involved with the establishment of schizophrenia, as well as the phenotypic traits observed in adult patients.

Graphical abstract

Neural stem cells (NSCs) and neurons were derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients and controls. Proteomic analyses were performed on the enriched mitochondrial and nuclear fractions of NSCs and neurons. Whole-cell proteomic analysis was also performed in neurons. Our results revealed alteration in proteins related to mitochondrial function, cell cycle control, among others. We also performed energy pathway analysis and reactive oxygen species (ROS) analysis of NSCs, which revealed alterations in mitochondrial oxygen consumption and a tendency of higher levels of intracellular ROS in schizophrenia-derived cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [84] partner repository with the dataset identifier PXD021976 and https://doi.org/10.6019/PXD021976.

References

  1. Kahn RS, Sommer IE, Murray RM et al (2015) Schizophrenia. Nat Rev Dis Prim. https://doi.org/10.1038/nrdp.2015.67

    Article  PubMed  Google Scholar 

  2. Insel TR (2010) Rethinking schizophrenia. Nature 468:187–193. https://doi.org/10.1038/nature09552

    Article  PubMed  CAS  Google Scholar 

  3. Martins-de-Souza D, Harris LW, Guest PC, Bahn S (2011) The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal 15:2067–2079. https://doi.org/10.1089/ars.2010.3459

    Article  PubMed  CAS  Google Scholar 

  4. Nascimento JM, Martins-de-Souza D (2015) The proteome of schizophrenia. npj Schizophr 1:14003. https://doi.org/10.1038/npjschz.2014.3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zuccoli GS, Saia-Cereda VM, Nascimento JM, Martins-de-Souza D (2017) The energy metabolism dysfunction in psychiatric disorders postmortem brains: Focus on proteomic evidence. Front Neurosci 11:1–14. https://doi.org/10.3389/fnins.2017.00493

    Article  Google Scholar 

  6. Taylor SW, Fahy E, Ghosh SS (2003) Global Organellar Proteom 21:82–88

    CAS  Google Scholar 

  7. Pedrosa E, Sandler V, Shah A et al (2011) Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 25:88–103. https://doi.org/10.3109/01677063.2011.597908

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  PubMed  CAS  Google Scholar 

  10. Marchetto MC, Brennand KJ, Boyer LF, Gage FH (2011) Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises. Hum Mol Genet 20:R109–R115. https://doi.org/10.1093/hmg/ddr336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sebastian R, Song Y, Pak CH (2022) Probing the molecular and cellular pathological mechanisms of schizophrenia using human induced pluripotent stem cell models. Schizophr Res. https://doi.org/10.1016/j.schres.2022.06.028

    Article  PubMed  Google Scholar 

  12. Notaras M, Lodhi A, Fang H et al (2021) The proteomic architecture of schizophrenia iPSC-derived cerebral organoids reveals alterations in GWAS and neuronal development factors. Transl Psychiatry 11:1–16. https://doi.org/10.1038/s41398-021-01664-5

    Article  CAS  Google Scholar 

  13. Notaras M, Lodhi A, Dündar F et al (2022) Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Mol Psychiatry 27:1416–1434. https://doi.org/10.1038/s41380-021-01316-6

    Article  PubMed  CAS  Google Scholar 

  14. Marchetto MCN, Winner B, Gage FH (2010) Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases. Hum Mol Genet 19:R71–R76. https://doi.org/10.1093/hmg/ddq159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Brennand KJ, Simone A, Jou J et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225. https://doi.org/10.1038/nature09915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Brennand KJ, Marchetto MC, Benvenisty N et al (2015) Creating patient-specific neural cells for the in Vitro Study of Brain Disorders. Stem Cell Rep 5:933–945. https://doi.org/10.1016/j.stemcr.2015.10.011

    Article  Google Scholar 

  17. Casas BS, Vitória G, Do Costa MN et al (2018) HiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis. Transl Psych. https://doi.org/10.1038/s41398-018-0095-9

    Article  Google Scholar 

  18. Da Silveira B, De Paulsen R, Maciel M, Galina A et al (2012) Altered Oxygen Metabolism Associated to Neurogenesis of Induced Pluripotent Stem Cells Derived From a Schizophrenic Patient. Cell Transpl 21:1547–1559. https://doi.org/10.3727/096368911X600957

    Article  Google Scholar 

  19. da Silveira B, Paulsen SC, Cardoso MP, Stelling, et al (2014) Valproate reverts zinc and potassium imbalance in schizophrenia-derived reprogrammed cells. Schizophr Res 154:30–35. https://doi.org/10.1016/j.schres.2014.02.007

    Article  Google Scholar 

  20. Narula K, Datta A, Chakraborty N, Chakraborty S (2013) Comparative analyses of nuclear proteome: extending its function. Front Plant Sci 4:1–14. https://doi.org/10.3389/fpls.2013.00100

    Article  Google Scholar 

  21. Khacho M, Slack RS (2018) Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain. Dev Dyn 247:47–53. https://doi.org/10.1002/dvdy.24538

    Article  PubMed  CAS  Google Scholar 

  22. Hroudová J, Fišar Z (2011) Connectivity between mitochondrial functions and psychiatric disorders. Psychiatry Clin Neurosci 65:130–141

    Article  PubMed  Google Scholar 

  23. Rezin GT, Amboni G, Zugno AI et al (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34:1021–1029. https://doi.org/10.1007/s11064-008-9865-8

    Article  PubMed  CAS  Google Scholar 

  24. Trindade P, Nascimento JM, Casas BS et al (2023) Induced pluripotent stem cell-derived astrocytes from patients with schizophrenia exhibit an inflammatory phenotype that affects vascularization. Mol Psychiatry 28:871–882. https://doi.org/10.1038/s41380-022-01830-1

    Article  PubMed  CAS  Google Scholar 

  25. Sochacki J, Devalle S, Reis M et al (2016) Generation of iPS cell lines from schizophrenia patients using a non-integrative method. Stem Cell Res 17:97–101. https://doi.org/10.1016/j.scr.2016.05.017

    Article  PubMed  CAS  Google Scholar 

  26. Nascimento JM, Saia-Cereda VM, Zuccoli GS et al (2022) Proteomic signatures of schizophrenia-sourced iPSC-derived neural cells and brain organoids are similar to patients’ postmortem brains. Cell Biosci 12:1–16. https://doi.org/10.1186/s13578-022-00928-x

    Article  CAS  Google Scholar 

  27. Clayton DA, Shadel GS (2014) Isolation of mitochondria from tissue culture cells. Cold Spring Harb Protoc 2014:1109–1111. https://doi.org/10.1101/pdb.prot080002

    Article  Google Scholar 

  28. Shevchenko A, Tomas H, Havliš J et al (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860. https://doi.org/10.1038/nprot.2006.468

    Article  CAS  Google Scholar 

  29. Calvano SE, Xiao W, Richards DR et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037. https://doi.org/10.1038/nature03985

    Article  PubMed  CAS  Google Scholar 

  30. Wu X, Al HM, Chen JY (2014) Pathway and network analysis in proteomics. J Theor Biol 362:44–52. https://doi.org/10.1016/j.jtbi.2014.05.031

    Article  PubMed  CAS  Google Scholar 

  31. Krämer A, Green J, Pollard J, Tugendreich S (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30:523–530. https://doi.org/10.1093/bioinformatics/btt703

    Article  PubMed  CAS  Google Scholar 

  32. Oparka M, Walczak J, Malinska D et al (2016) Quantifying ROS levels using CM-H2DCFDA and HyPer. Methods 109:3–11. https://doi.org/10.1016/j.ymeth.2016.06.008

    Article  PubMed  CAS  Google Scholar 

  33. Beckervordersandforth R, Ebert B, Schäffner I et al (2017) Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron 93:560-573.e6. https://doi.org/10.1016/j.neuron.2016.12.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Khacho M, Clark A, Svoboda DS et al (2017) Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Hum Mol Genet 26:3327–3341. https://doi.org/10.1093/hmg/ddx217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Khacho M, Clark A, Svoboda DS et al (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19:232–247. https://doi.org/10.1016/j.stem.2016.04.015

    Article  PubMed  CAS  Google Scholar 

  36. Steib K, Schaffner I, Jagasia R et al (2014) Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci 34:6624–6633. https://doi.org/10.1523/JNEUROSCI.4972-13.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Candelario KM, Shuttleworth CW, Cunningham LA (2013) Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor-1alpha expression. J Neurochem 125:420–429. https://doi.org/10.1111/jnc.12204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Studer L, Csete M, Lee SH et al (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20:7377–7383. https://doi.org/10.1523/jneurosci.20-19-07377.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Pistollato F, Chen HL, Schwartz PH et al (2007) Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes. Mol Cell Neurosci 35:424–435. https://doi.org/10.1016/j.mcn.2007.04.003

    Article  PubMed  CAS  Google Scholar 

  40. Panchision DM (2009) The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 220:562–568. https://doi.org/10.1002/jcp.21812

    Article  PubMed  CAS  Google Scholar 

  41. Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738. https://doi.org/10.1016/j.cmet.2011.08.016

    Article  PubMed  CAS  Google Scholar 

  42. Kim D, Rhee I, Paik J (2014) Metabolic circuits in neural stem cells. Cell Mol Life Sci 71:4221–4241. https://doi.org/10.1007/s00018-014-1686-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kann O, Kovács R (2007) Mitochondria and neuronal activity. Am J Physiol Physiol 292:C641–C657. https://doi.org/10.1152/ajpcell.00222.2006

    Article  CAS  Google Scholar 

  44. Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M (2015) Mitochondrial dysfunction in schizophrenia: Pathways, mechanisms and implications. Neurosci Biobehav Rev 48:10–21. https://doi.org/10.1016/j.neubiorev.2014.11.005

    Article  PubMed  CAS  Google Scholar 

  45. Levy M, Faas GC, Saggau P et al (2003) Mitochondrial regulation of synaptic plasticity in the hippocampus. J Biol Chem 278:17727–17734. https://doi.org/10.1074/jbc.M212878200

    Article  PubMed  CAS  Google Scholar 

  46. Nicholls DG, Budd SL (2000) Mitochondria and Neuronal Survival. Physiol Rev 80:315–360. https://doi.org/10.1152/physrev.2000.80.1.315

    Article  PubMed  CAS  Google Scholar 

  47. Ni P, Noh H, Park GH et al (2019) iPSC-derived homogeneous populations of developing schizophrenia cortical interneurons have compromised mitochondrial function. Mol Psychiatry. https://doi.org/10.1038/s41380-019-0423-3

    Article  PubMed  PubMed Central  Google Scholar 

  48. Robicsek O, Karry R, Petit I et al (2013) Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 18:1067–1076. https://doi.org/10.1038/mp.2013.67

    Article  PubMed  CAS  Google Scholar 

  49. Cremisi F, Philpott A, Ohnuma SI (2003) Cell cycle and cell fate interactions in neural development. Curr Opin Neurobiol 13:26–33. https://doi.org/10.1016/S0959-4388(03)00005-9

    Article  PubMed  CAS  Google Scholar 

  50. Katsel P, Davis KL, Li C et al (2008) Abnormal indices of cell cycle activity in schizophrenia and their potential association with oligodendrocytes. Neuropsychopharmacology 33:2993–3009. https://doi.org/10.1038/npp.2008.19

    Article  PubMed  CAS  Google Scholar 

  51. Fan Y, Abrahamsen G, McGrath JJ, MacKay-Sim A (2012) Altered cell cycle dynamics in schizophrenia. Biol Psychiatry 71:129–135. https://doi.org/10.1016/j.biopsych.2011.10.004

    Article  PubMed  CAS  Google Scholar 

  52. Raza MU, Tufan T, Wang Y et al (2017) DNA damage in major psychiatric diseases. Neurotox Res 30:251–267. https://doi.org/10.1007/s12640-016-9621-9

    Article  CAS  Google Scholar 

  53. Odemis S, Tuzun E, Gulec H et al (2016) Association between polymorphisms of DNA repair genes and risk of Schizophrenia. Genet Test Mol Biomark 20:11–17. https://doi.org/10.1089/gtmb.2015.0168

    Article  CAS  Google Scholar 

  54. Saadat M, Pakyari N, Farrashbandi H (2008) Genetic polymorphism in the DNA repair gene XRCC1 and susceptibility to schizophrenia. Psychiatry Res 157:241–245. https://doi.org/10.1016/j.psychres.2007.07.014

    Article  PubMed  CAS  Google Scholar 

  55. Markkanen E, Meyer U, Dianov GL (2016) Dna damage and repair in schizophrenia and autism: Implications for cancer comorbidity and beyond. Int J Mol Sci. https://doi.org/10.3390/ijms17060856

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee Y, McKinnon PJ (2007) Responding to DNA double strand breaks in the nervous system. Neuroscience 145:1365–1374. https://doi.org/10.1016/j.neuroscience.2006.07.026

    Article  PubMed  CAS  Google Scholar 

  57. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619. https://doi.org/10.1038/nrg1879

    Article  PubMed  CAS  Google Scholar 

  58. Woodgett JR, Cohen P (1984) Multisite phosphorylation of glycogen synthase. Molecular basis for the substrate specificity of glycogen synthease kinase-3 and casein kinase-II (glycogen synthase kinase-5). Biochim Biophys Acta (BBA)/Protein Struct Mol 788:339–347. https://doi.org/10.1016/0167-4838(84)90047-5

    Article  CAS  Google Scholar 

  59. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11:539–551. https://doi.org/10.1038/nrn2870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bijur GN, Jope RS (2003) Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 87:1427–1435. https://doi.org/10.1046/j.1471-4159.2003.02113.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ong SB, Hall AR, Dongworth RK et al (2015) Akt protects the heart against ischaemia-reperfusion injury by modulating mitochondrial morphology. Thromb Haemost 113:513–521. https://doi.org/10.1160/TH14-07-0592

    Article  PubMed  Google Scholar 

  62. Wang L, Zhou K, Fu Z et al (2017) Brain development and Akt Signaling: the crossroads of signaling pathway and neurodevelopmental diseases. J Mol Neurosci 61:379–384. https://doi.org/10.1007/s12031-016-0872-y

    Article  PubMed  CAS  Google Scholar 

  63. Emamian ES (2012) AKT/GSK3 signaling pathway and schizophrenia. Front Mol Neurosci 5:1–12. https://doi.org/10.3389/fnmol.2012.00033

    Article  CAS  Google Scholar 

  64. Polleux F, Snider W (2010) Initiating and growing an axon. Cold Spring Harb Perspect Biol 2:1–19. https://doi.org/10.1101/cshperspect.a001925

    Article  CAS  Google Scholar 

  65. Da Silva JS, Dotti CG (2002) Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3:694–704. https://doi.org/10.1038/nrn918

    Article  PubMed  CAS  Google Scholar 

  66. Bellon A (2007) New genes associated with schizophrenia in neurite formation: A review of cell culture experiments. Mol Psychiatry 12:620–629. https://doi.org/10.1038/sj.mp.4001985

    Article  PubMed  CAS  Google Scholar 

  67. Kamiya A, Kubo KI, Tomoda T et al (2005) A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 7:1067–1078. https://doi.org/10.1038/ncb1328

    Article  CAS  Google Scholar 

  68. Ozeki Y, Tomoda T, Kleiderlein J et al (2003) Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci U S A 100:289–294. https://doi.org/10.1073/pnas.0136913100

    Article  PubMed  CAS  Google Scholar 

  69. Brennand KJ, Gage FH (2011) Concise review: the promise of human induced pluripotent stem cell-based studies of schizophrenia. Stem Cells 29:1915–1922. https://doi.org/10.1002/stem.762

    Article  PubMed  CAS  Google Scholar 

  70. Jones LB, Johnson N, Byne W (2002) Alterations in MAP2 immunocytochemistry in areas 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Res Neuroimaging 114:137–148

    Article  CAS  Google Scholar 

  71. Kalus P, Mu CATJ, Zuschratter W, Senitz D (2000) The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. NeuroReport 11:3621–3625

    Article  PubMed  CAS  Google Scholar 

  72. Zheng X, Boyer L, Jin M et al (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife 5:1–25. https://doi.org/10.7554/eLife.13374

    Article  CAS  Google Scholar 

  73. Nugent AA, Kolpak AL, Engle EC (2012) Human disorders of axon guidance. Curr Opin Neurobiol 22:837–843. https://doi.org/10.1016/j.conb.2012.02.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Korecka JA, Levy S, Isacson O (2016) In vivo modeling of neuronal function, axonal impairment and connectivity in neurodegenerative and neuropsychiatric disorders using induced pluripotent stem cells. Mol Cell Neurosci 73:3–12. https://doi.org/10.1016/j.mcn.2015.12.004

    Article  PubMed  CAS  Google Scholar 

  75. Gilman SR, Chang J, Xu B et al (2012) Diverse types of genetic variation converge on functional gene networks involved in schizophrenia. Nat Neurosci 15:1723–1728. https://doi.org/10.1038/nn.3261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lewis D, a, Lieberman J a, (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28:325–334. https://doi.org/10.1016/S0896-6273(00)00111-2

    Article  PubMed  CAS  Google Scholar 

  77. Smith GM, Gallo G (2018) The role of mitochondria in axon development and regeneration. Dev Neurobiol 78:221–237. https://doi.org/10.1002/dneu.22546

    Article  PubMed  CAS  Google Scholar 

  78. Do KQ, Cabungcal JH, Frank A et al (2009) Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol 19:220–230. https://doi.org/10.1016/j.conb.2009.05.001

    Article  PubMed  CAS  Google Scholar 

  79. Behrens MM, Ali SS, Dugan LL (2008) Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of Schizophrenia. J Neurosci 28:13957–13966. https://doi.org/10.1523/JNEUROSCI.4457-08.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Pedrini M, Massuda R, Fries GR et al (2012) Similarities in serum oxidative stress markers and inflammatory cytokines in patients with overt schizophrenia at early and late stages of chronicity. J Psychiatr Res 46:819–824. https://doi.org/10.1016/j.jpsychires.2012.03.019

    Article  PubMed  Google Scholar 

  81. Wells PG, Mccallum GP, Chen CS et al (2009) Oxidative stress in developmental origins of disease: Teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 108:4–18. https://doi.org/10.1093/toxsci/kfn263

    Article  PubMed  CAS  Google Scholar 

  82. Liu G, Dwyer T (2014) Microtubule dynamics in axon guidance. Neurosci Bull 30:569–583. https://doi.org/10.1007/s12264-014-1444-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Pacheco A, Gallo G (2016) Actin filament-microtubule interactions in axon initiation and branching. Brain Res Bull 126:300–310. https://doi.org/10.1016/j.brainresbull.2016.07.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Perez-Riverol Y, Csordas A, Bai J et al (2019) The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res 47:D442–D450. https://doi.org/10.1093/nar/gky1106

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gabriela Lopes Vitória for her excellent support related to stem cell generation and culture and Ludmila S. S. Bastos for cell bank expansion. We also thank Mariana Fioramonte for her support with the mass spectrometry analysis. We thank the São Paulo Research Foundation—FAPESP (grant numbers 2016/04912-2, 2018/14666-4, 2014/21035-0, 2015/15626-8, 2017/25588-1 and 2019/00098-7); the Brazilian National Council for Scientific and Technological Development—CNPq and the Foundation for Research Support in the State of Rio de Janeiro (FAPERJ) for funding this work.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico, 2018/01410-1, Daniel Martins de-Souza, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro.

Author information

Authors and Affiliations

Authors

Contributions

GSZ, JMN, SKR and DMS contributed to the conceptualization and design of the study. GSZ performed the experiments and analyzed the data. PMMV contributed to the design of the metabolic analysis. GSZ wrote the first draft of the manuscript. GSZ, JMN and DMS reviewed the final manuscript. All the authors approved the final version of the manuscript.

Corresponding author

Correspondence to Daniel Martins-de-Souza.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuccoli, G.S., Nascimento, J.M., Moraes-Vieira, P.M. et al. Mitochondrial, cell cycle control and neuritogenesis alterations in an iPSC-based neurodevelopmental model for schizophrenia. Eur Arch Psychiatry Clin Neurosci 273, 1649–1664 (2023). https://doi.org/10.1007/s00406-023-01605-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-023-01605-x

Keywords

Navigation