Skip to main content

Advertisement

Log in

Imminent cognitive decline in normal elderly individuals is associated with hippocampal hyperconnectivity in the variant neural correlates of episodic memory

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The secondary prevention trials of Alzheimer’s disease (AD) require an enrichment strategy to recruit individuals with imminent cognitive decline at the preclinical stage. Previously, we demonstrated a variant neural correlates of episodic memory (EM) function in apolipoprotein E (APOE) ε4 carriers. Herein, we investigated whether this variation was associated with longitudinal EM performance. This 3-year longitudinal study included 88 normal elderly subjects with EM assessment and resting-state functional MRI data at baseline; 48 subjects (27 ε3 homozygotes and 21 ε4 carriers) underwent follow-up EM assessment. In the identified EM neural correlates, multivariable regression models examined the association between hippocampal functional connectivity (HFC) and longitudinal EM change. Independent validation was performed using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. At baseline, the EM neural correlates were characterized in the Papez circuit regions in the ε3 homozygotes, but in the sensorimotor cortex and cuneus in the ε4 carriers. Longitudinally, the ε4 carriers exhibited a negative association of the baseline HFC strength in the EM neural correlates with annual rate of EM change (R2 = 0.25, p = 0.05). This association also showed a trend in the ADNI dataset (R2 = 0.42, p = 0.06). These results indicate that hippocampal hyperconnectivity in the variant EM neural correlates is associated with imminent EM decline in ε4 carriers, which may serve as a promising enrichment strategy for secondary prevention trials of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG, Pankratz VS, Donohue MC, Trojanowski JQ (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, Bakardjian H, Benali H, Bertram L, Blennow K, Broich K, Cavedo E, Crutch S, Dartigues JF, Duyckaerts C, Epelbaum S, Frisoni GB, Gauthier S, Genthon R, Gouw AA, Habert MO, Holtzman DM, Kivipelto M, Lista S, Molinuevo JL, O'Bryant SE, Rabinovici GD, Rowe C, Salloway S, Schneider LS, Sperling R, Teichmann M, Carrillo MC, Cummings J, Jack CR, Jr., Proceedings of the Meeting of the International Working G, the American Alzheimer's Association on "The Preclinical State of AD, July, Washington Dc USA (2016) Preclinical alzheimer's disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement 12:292–323

  4. Soldan A, Pettigrew C, Cai Q, Wang MC, Moghekar AR, O’Brien RJ, Selnes OA, Albert MS, Team BR (2016) Hypothetical preclinical Alzheimer disease groups and longitudinal cognitive change. JAMA Neurol 73:698–705

    Article  PubMed  PubMed Central  Google Scholar 

  5. Roe CM, Fagan AM, Grant EA, Hassenstab J, Moulder KL, Maue Dreyfus D, Sutphen CL, Benzinger TL, Mintun MA, Holtzman DM, Morris JC (2013) Amyloid imaging and csf biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology 80:1784–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aizenstein HJ, Klunk WE (2015) Where is hippocampal activity in the cascade of Alzheimer’s disease biomarkers? Brain 138:831–833

    Article  PubMed  PubMed Central  Google Scholar 

  7. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, Matthews PM, Beckmann CF, Mackay CE (2009) Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci 106:7209–7214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sperling RA, Laviolette PS, O’Keefe K, O’Brien J, Rentz DM, Pihlajamaki M, Marshall G, Hyman BT, Selkoe DJ, Hedden T, Buckner RL, Becker JA, Johnson KA (2009) Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63:178–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen G, Shu H, Chen G, Ward BD, Antuono PG, Zhang Z, Li SJ, Alzheimer’s Disease Neuroimaging I (2016) Staging Alzheimer’s disease risk by sequencing brain function and structure, cerebrospinal fluid, and cognition biomarkers. J Alzheimers Dis 54:983–993

    Article  PubMed  PubMed Central  Google Scholar 

  10. Busche MA, Chen X, Henning HA, Reichwald J, Staufenbiel M, Sakmann B, Konnerth A (2012) Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 109:8740–8745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee JM, Holtzman DM (2011) Neuronal activity regulates the regional vulnerability to amyloid-beta deposition. Nat Neurosci 14:750–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamamoto K, Tanei ZI, Hashimoto T, Wakabayashi T, Okuno H, Naka Y, Yizhar O, Fenno LE, Fukayama M, Bito H, Cirrito JR, Holtzman DM, Deisseroth K, Iwatsubo T (2015) Chronic optogenetic activation augments abeta pathology in a mouse model of Alzheimer disease. Cell Rep 11:859–865

    Article  CAS  PubMed  Google Scholar 

  13. Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, Ho KO, Yu GQ, Kreitzer A, Finkbeiner S, Noebels JL, Mucke L (2007) Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55:697–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, Staufenbiel M, Konnerth A, Garaschuk O (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321:1686–1689

    Article  CAS  PubMed  Google Scholar 

  15. Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, Devidze N, Ho K, Yu GQ, Palop JJ, Mucke L (2012) Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci 109:E2895-2903

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, Yassa MA, Bassett SS, Shelton AL, Gallagher M (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74:467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bakker A, Albert MS, Krauss G, Speck CL, Gallagher M (2015) Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by FMRI and memory task performance. Neuroimage Clin 7:688–698

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031

    Article  PubMed  Google Scholar 

  19. Reiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W, Ayutyanont N, Keppler J, Reeder SA, Langbaum JB, Alexander GE, Klunk WE, Mathis CA, Price JC, Aizenstein HJ, DeKosky ST, Caselli RJ (2009) Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci 106:6820–6825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trachtenberg AJ, Filippini N, Mackay CE (2012) The effects of APOE-epsilon4 on the BOLD response. Neurobiol Aging 33:323–334

    Article  CAS  PubMed  Google Scholar 

  21. Caselli RJ, Dueck AC, Osborne D, Sabbagh MN, Connor DJ, Ahern GL, Baxter LC, Rapcsak SZ, Shi J, Woodruff BK, Locke DE, Snyder CH, Alexander GE, Rademakers R, Reiman EM (2009) Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect. N Engl J Med 361:255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shu H, Shi Y, Chen G, Wang Z, Liu D, Yue C, Ward BD, Li W, Xu Z, Chen G, Guo QH, Xu J, Li SJ, Zhang Z (2019) Distinct neural correlates of episodic memory among apolipoprotein e alleles in cognitively normal elderly. Brain Imaging Behav 13:255–269

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guo Q, Zhao Q, Chen M, Ding D, Hong Z (2009) A comparison study of mild cognitive impairment with 3 memory tests among Chinese individuals. Alzheimer Dis Assoc Disord 23:253–259

    Article  PubMed  Google Scholar 

  24. Shu H, Shi Y, Chen G, Wang Z, Liu D, Yue C, Ward BD, Li W, Xu Z, Chen G, Guo Q, Xu J, Li SJ, Zhang Z (2016) Opposite neural trajectories of apolipoprotein e 4 and 2 alleles with aging associated with different risks of Alzheimer’s disease. Cereb Cortex 26:1421–1429

    Article  PubMed  Google Scholar 

  25. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of FMRI data sets. Neuroimage 19:1233–1239

    Article  PubMed  Google Scholar 

  26. Luo X, Qiu T, Jia Y, Huang P, Xu X, Yu X, Shen Z, Jiaerken Y, Guan X, Zhou J, Zhang M, Adni, (2017) Intrinsic functional connectivity alterations in cognitively intact elderly apoe epsilon4 carriers measured by eigenvector centrality mapping are related to cognition and csf biomarkers: a preliminary study. Brain Imaging Behav 11:1290–1301

    Article  PubMed  Google Scholar 

  27. McKenna F, Koo BB, Killiany R, Alzheimer’s Disease Neuroimaging I (2016) Comparison of ApoE-related brain connectivity differences in early MCI and normal aging populations: an FMRI study. Brain Imaging Behav 10:970–983

    Article  PubMed  Google Scholar 

  28. Goldberg TE, Harvey PD, Wesnes KA, Snyder PJ, Schneider LS (2015) Practice effects due to serial cognitive assessment: Implications for preclinical Alzheimer’s disease randomized controlled trials. Alzheimers Dement 1:103–111

    Google Scholar 

  29. Hyman BT, Gomez-Isla T, Briggs M, Chung H, Nichols S, Kohout F, Wallace R (1996) Apolipoprotein e and cognitive change in an elderly population. Ann Neurol 40:55–66

    Article  CAS  PubMed  Google Scholar 

  30. Yu L, Boyle PA, Leurgans S, Schneider JA, Bennett DA (2014) Disentangling the effects of age and APOE on neuropathology and late life cognitive decline. Neurobiol Aging 35:819–826

    Article  CAS  PubMed  Google Scholar 

  31. Mormino EC, Betensky RA, Hedden T, Schultz AP, Ward A, Huijbers W, Rentz DM, Johnson KA, Sperling RA, Alzheimer’s Disease Neuroimaging I, Australian Imaging B, Lifestyle Flagship Study of A, Harvard Aging Brain S (2014) Amyloid and APOE epsilon4 interact to influence short-term decline in preclinical Alzheimer disease. Neurology 82:1760–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Palop JJ, Mucke L (2016) Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 17:777–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leal SL, Yassa MA (2013) Perturbations of neural circuitry in aging, mild cognitive impairment, and Alzheimer’s disease. Ageing Res Rev 12:823–831

    Article  PubMed  PubMed Central  Google Scholar 

  34. O’Brien JL, O’Keefe KM, LaViolette PS, DeLuca AN, Blacker D, Dickerson BC, Sperling RA (2010) Longitudinal FMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology 74:1969–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leal SL, Landau SM, Bell RK, Jagust WJ (2017) Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline. Elife. https://doi.org/10.7554/eLife.22978

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kukolja J, Thiel CM, Eggermann T, Zerres K, Fink GR (2010) Medial temporal lobe dysfunction during encoding and retrieval of episodic memory in non-demented APOE epsilon4 carriers. Neuroscience 168:487–497

    Article  CAS  PubMed  Google Scholar 

  37. Fleisher AS, Houston WS, Eyler LT, Frye S, Jenkins C, Thal LJ, Bondi MW (2005) Identification of Alzheimer disease risk by functional magnetic resonance imaging. Arch Neurol 62:1881–1888

    Article  PubMed  Google Scholar 

  38. Bondi MW, Houston WS, Eyler LT, Brown GG (2005) FMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 64:501–508

    Article  PubMed  Google Scholar 

  39. Han SD, Houston WS, Jak AJ, Eyler LT, Nagel BJ, Fleisher AS, Brown GG, Corey-Bloom J, Salmon DP, Thal LJ, Bondi MW (2007) Verbal paired-associate learning by APOE genotype in non-demented older adults: FMRI evidence of a right hemispheric compensatory response. Neurobiol Aging 28:238–247

    Article  CAS  PubMed  Google Scholar 

  40. Tuminello ER, Han SD (2011) The apolipoprotein e antagonistic pleiotropy hypothesis: review and recommendations. Int J Alzheimers Dis 2011:726197

    PubMed  PubMed Central  Google Scholar 

  41. Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci 98:13763–13768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Noppeney U, Friston KJ, Price CJ (2004) Degenerate neuronal systems sustaining cognitive functions. J Anat 205:433–442

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nadkarni NK, Perera S, Snitz BE, Mathis CA, Price J, Williamson JD, DeKosky ST, Klunk WE, Lopez OL (2017) Association of brain amyloid-beta with slow gait in elderly individuals without dementia: influence of cognition and apolipoprotein e epsilon4 genotype. JAMA Neurol 74:82–90

    Article  PubMed  PubMed Central  Google Scholar 

  44. Verghese J, Wang C, Lipton RB, Holtzer R, Xue X (2007) Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry 78:929–935

    Article  PubMed  PubMed Central  Google Scholar 

  45. Marquis S, Moore MM, Howieson DB, Sexton G, Payami H, Kaye JA, Camicioli R (2002) Independent predictors of cognitive decline in healthy elderly persons. Arch Neurol 59:601–606

    Article  PubMed  Google Scholar 

  46. Collins FS, Tabak LA (2014) Policy: Nih plans to enhance reproducibility. Nature 505:612–613

    Article  PubMed  PubMed Central  Google Scholar 

  47. Grill JD, Monsell SE (2014) Choosing Alzheimer’s disease prevention clinical trial populations. Neurobiol Aging 35:466–471

    Article  PubMed  Google Scholar 

  48. Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V, Birn RM (2013) The effect of resting condition on resting-state FMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. Neuroimage 78:463–473

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Ms. Lydia Washechek, B.A., for editorial assistance. This work was supported by the National Key R&D Program of China (2016YFC1306700), the National Natural Science Foundation of China (81420108012, 81830040, and 81901108), the USA National Institutes of Health (R44AG035405, Brainsymphonics, LLC), Science and Technology Program of Guangdong (2018B030334001), Program of Excellent Talents in Medical Science of Jiangsu Province (JCRCA2016006), and the Foundation of Jiangsu Commission of Health (Z2018023).

Data collection and sharing for validation analyses of this work was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the AD Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Funding

This work was supported by the National Key R&D Program of China (2016YFC1306700), the National Natural Science Foundation of China (81420108012, 81830040, and 81901108), the USA National Institutes of Health (R44AG035405, Brainsymphonics, LLC), Science and Technology Program of Guangdong (2018B030334001), Program of Excellent Talents in Medical Science of Jiangsu Province (JCRCA2016006), and the Foundation of Jiangsu Commission of Health (Z2018023). Data collection and sharing for validation analyses of this work was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense Award Number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the AD Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Shi-Jiang Li or Zhijun Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 334 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, H., Chen, G., Ward, B.D. et al. Imminent cognitive decline in normal elderly individuals is associated with hippocampal hyperconnectivity in the variant neural correlates of episodic memory. Eur Arch Psychiatry Clin Neurosci 272, 783–792 (2022). https://doi.org/10.1007/s00406-021-01310-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-021-01310-7

Keywords

Navigation