Skip to main content
Log in

Chromosomal polymorphisms and susceptibility to menstrual disorders: a retrospective analysis of 24,578 women

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the association between the polymorphic variants of chromosomes and menstrual disorders.

Methods

The data from our previous retrospective, single-center cohort study were re-analyzed. Women with regular menstruation were included as controls. Women with menstrual cycle abnormalities were subgrouped according to reproductive causes. The frequency of chromosomal polymorphisms was compared between groups. Regression analysis was used to adjust for potential confounding variables.

Result

A total of 24,578 women composed of 8062 women with regular cycles as the control group and 16,516 women as the menstrual cycle irregularity group were included. When compared with the control group, the incidence of chromosomal polymorphisms in the total menstrual cycle irregularity group, Polycystic ovary syndrome group, and Primary ovarian insufficiency group were significantly higher (4.49% versus 5.34%, P = 0.004, 4.49% versus 5.35%, P = 0.018 and 4.49% versus 5.94%, P = 0.002, respectively). The incidences of inv(9) in the Primary ovarian insufficiency group were significantly higher than that in the control individuals (1.0% versus 1.6%, P = 0.024). Logistic regression analysis showed an effect of chromosomal polymorphisms on menstrual cycle irregularity (OR: 1.62, 95% CI: 1.234–2.187, P = 0.007; adjusted OR: 1.46, 95% CI: 1.153–1.819, P < 0.001). The result demonstrated an effect of chromosomal polymorphisms on the Primary ovarian insufficiency group (OR: 2.52, 95% CI: 1.307–5.177, P < 0.001; adjusted OR: 2.61, 95% CI: 1.371–4.605, P < 0.001).

Conclusion

The study suggests chromosomal polymorphisms adversely affect female menstrual cycle irregularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

All data are available in this paper.

Code availability

Not applicable.

References

  1. Harris H, Titus L, Cramer D, Terry KJI (2017) Long and irregular menstrual cycles, polycystic ovary syndrome, and ovarian cancer risk in a population-based case-control study. Int J Cancer 140:285–291. https://doi.org/10.1002/ijc.30441

    Article  CAS  PubMed  Google Scholar 

  2. Chiazze L, Brayer FT, Macisco JJ, Parker MP, Duffy B (1968) The length and variability of the human menstrual cycle. JAMA 203:377–380

    Article  PubMed  Google Scholar 

  3. Treloar AE (1967) Variation of the human menstrual cycle through reproductive life. Int J Fertil 12:77–126

    CAS  PubMed  Google Scholar 

  4. Negi P, Mishra A, Lakhera P (2018) Menstrual abnormalities and their association with lifestyle pattern in adolescent girls of Garhwal, India. J Family Med Prim Care. 7:804. https://doi.org/10.4103/jfmpc.jfmpc_159_17

    Article  PubMed  PubMed Central  Google Scholar 

  5. Laksham KB, Selvaraj R, Kar SS (2019) Menstrual disorders and quality of life of women in an urban area of Puducherry: a community-based cross-sectional study. J Family Med Prim Care. 8:137. https://doi.org/10.4103/jfmpc.jfmpc_209_18

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee LK, Chen P, Kaur LK (2006) Menstruation among adolescent girls in Malaysia: a cross-sectional school survey. Singapore Med J 47:869

    CAS  PubMed  Google Scholar 

  7. Deligeoroglou E, Tsimaris P, Deliveliotou A, Christopoulos P (2006) Menstrual disorders during adolescence. Pediatr Endocrinol Rev 3:150–159

    PubMed  Google Scholar 

  8. Cheng R, Ma Y, Nie Y, Qiao X, Yang Z, Zeng R, Xu L (2017) Chromosomal polymorphisms are associated with female infertility and adverse reproductive outcomes after infertility treatment: a 7-year retrospective study. Reprod Biomed 35:72–80. https://doi.org/10.1016/j.rbmo.2017.03.022

    Article  CAS  Google Scholar 

  9. Su Y, Kong G, Su Y, Zhou Y, Lv L, Wang Q, Huang B, Zheng R, Li Q, Yuan H (2015) Correlation analysis of the PNPLA7 gene polymorphism and susceptibility to menstrual disorder. Genet Mol Res 14:1733–1740. https://doi.org/10.4238/2015.March.6.20

    Article  CAS  PubMed  Google Scholar 

  10. Gorai I, Tanaka K, Inada M, Morinaga H, Uchiyama Y, Kikuchi R, Chaki O, Hirahara F (2003) Estrogen-metabolizing gene polymorphisms, but not estrogen receptor-α gene polymorphisms, are associated with the onset of menarche in healthy postmenopausal Japanese women. J Clin Endocrinol Metab 88:799–803. https://doi.org/10.1210/jc.2002-020353

    Article  CAS  PubMed  Google Scholar 

  11. He C, Murabito JM (2014) Genome-wide association studies of age at menarche and age at natural menopause. Mol Cell Endocrinol 382:767–779. https://doi.org/10.1016/j.mce.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  12. Lussiana C, Guani B, Mari C, Restagno G, Massobrio M, Revelli O (2008) Mutations and polymorphisms of the FSH receptor (FSHR) gene: clinical implications in female fecundity and molecular biology of FSHR protein and gene. Obstet Gynecol Surv 63:785–795. https://doi.org/10.1097/OGX.0b013e31818957eb

    Article  PubMed  Google Scholar 

  13. Biggs WS, Demuth RHJ (2011) Premenstrual syndrome and premenstrual dysphoric disorder. Am Fam Phys 84:918–924

    Google Scholar 

  14. Chen Z-J, Zhao H, He L, Shi Y, Qin Y, Shi Y, Li Z, You L, Zhao J, Liu J (2011) Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16 3, 2p21 and 9q33. Nat Genet 3(43):55–59. https://doi.org/10.1038/ng.732

    Article  CAS  Google Scholar 

  15. Shi J, Zhang B, Choi J-Y, Gao Y-T, Li H, Lu W, Long J, Kang D, Xiang Y-B, Wen W (2016) Age at menarche and age at natural menopause in East Asian women: a genome-wide association study. Age (Dordr) 38:513–523. https://doi.org/10.1007/s11357-016-9939-5

    Article  PubMed  Google Scholar 

  16. Munro MG, Critchley HO, Fraser IS, Committee FMD, Haththotuwa R, Kriplani A, Bahamondes L, Füchtner C, Tonye R, Archer D (2018) The two FIGO systems for normal and abnormal uterine bleeding symptoms and classification of causes of abnormal uterine bleeding in the reproductive years: 2018 revisions. Int J Gynecol Obstet 143:393–408. https://doi.org/10.1002/ijgo.12666

    Article  Google Scholar 

  17. ESHRE TR, Fertility A-SPCWGJ sterility (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81:19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004

    Article  Google Scholar 

  18. Reproduction REASPCWG (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks reated to polycystic ovary syndrome (PCOS). Hum Reprod 19:41–47. https://doi.org/10.1093/humrep/deh098

    Article  Google Scholar 

  19. Melmed S, Casanueva FF, Hoffman AR, Kleinberg DL, Montori VM, Schlechte JA, Wass JA (2011) Diagnosis and treatment of hyperprolactinemia: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96:273–288. https://doi.org/10.1210/jc.2010-1692

    Article  CAS  PubMed  Google Scholar 

  20. POI EGGo, Webber L, Davies M, Anderson R, Bartlett J, Braat D, Cartwright B, Cifkova R, de Muinck K-SS, Hogervorst E (2016) ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod 31:926–937. https://doi.org/10.1093/humrep/dew027

    Article  Google Scholar 

  21. Critchley HO, Maybin JA, Armstrong GM, Williams AR (2020) Physiology of the endometrium and regulation of menstruation. Physiol Rev 100:1149–1179. https://doi.org/10.1152/physrev.00031.2019

    Article  PubMed  Google Scholar 

  22. Mihm M, Gangooly S, Muttukrishna S (2011) The normal menstrual cycle in women. Anim Reprod Sci 124:229–236. https://doi.org/10.1016/j.anireprosci.2010.08.030

    Article  CAS  PubMed  Google Scholar 

  23. Harlow SD, Campbell OM (2004) Epidemiology of menstrual disorders in developing countries: a systematic review. BJOG. https://doi.org/10.1111/j.1471-0528.2004.00012.x

    Article  PubMed  Google Scholar 

  24. Bahamondes L, Ali M (2015) Recent advances in managing and understanding menstrual disorders. F1000 Prime Rep. https://doi.org/10.12703/P7-33

    Article  Google Scholar 

  25. Brinton LA, Moghissi KS, Westhoff CL, Lamb EJ, Scoccia B (2010) Cancer risk among infertile women with androgen excess or menstrual disorders (including polycystic ovary syndrome). Fertil Steril 94:1787–1792

    Article  PubMed  Google Scholar 

  26. Lakkawar NJ, Jayavani R, Arthi P, Alaganandam P, Vanajakshi N (2014) A study of menstrual disorders in medical students and its correlation with biological variables. Nat Rev Endocrinol 2:3165–3175. https://doi.org/10.36347/sjams.2014.v02i06.065

    Article  Google Scholar 

  27. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7:219–231. https://doi.org/10.1038/nrendo.2010.217

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y, Fang S-y (2018) Potential genetic polymorphisms predicting polycystic ovary syndrome. Endocrine Connect 7:R187–R195. https://doi.org/10.1530/EC-18-0121

    Article  CAS  Google Scholar 

  29. Khan MJ, Ullah A, Basit S (2019) Genetic basis of polycystic ovary syndrome (PCOS): current perspectives. Appl Clin Genet 12:249. https://doi.org/10.2147/TACG.S200341

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chaudhary H, Patel J, Jain NK, Joshi R (2021) The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis. J Ovarian Res. 14:1–21. https://doi.org/10.1186/s13048-021-00879-w

    Article  CAS  Google Scholar 

  31. Jones MR, Goodarzi M (2016) Genetic determinants of polycystic ovary syndrome: progress and future directions. Fertil Steril 106:25–32. https://doi.org/10.1016/j.fertnstert.2016.04.040

    Article  PubMed  Google Scholar 

  32. Brand JS, Van Der Schouw YT, Onland-Moret NC, Sharp SJ, Ong KK, Khaw K-T, Ardanaz E, Amiano P, Boeing H, Chirlaque M-D (2013) Age at menopause, reproductive life span, and type 2 diabetes risk: results from the EPIC-interact study. Diabetes Care 36:1012–1019. https://doi.org/10.2337/dc12-1020

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jiao X, Ke H, Qin Y, Chen Z-J (2018) Molecular genetics of premature ovarian insufficiency. Trends Endocrinol Metab 29:795–807. https://doi.org/10.1016/j.tem.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  34. Katari S, Aarabi M, Kintigh A, Mann S, Yatsenko SA, Sanfilippo JS, Zeleznik AJ, Rajkovic AJ (2018) Chromosomal instability in women with primary ovarian insufficiency. Hum Reprod 33:531–538. https://doi.org/10.1093/humrep/dey012UNstr

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dvornyk VJ (2012) Genetics of age at menarche: a systematic review. Hum Reprod Update 18:198–210. https://doi.org/10.1093/humupd/dmr050

    Article  CAS  PubMed  Google Scholar 

  36. Ponomarenko I, Reshetnikov E, Altuchova O, Polonikov A, Sorokina I, Yermachenko A, Dvornyk V, Golovchenko O, Churnosov M (2019) Association of genetic polymorphisms with age at menarche in Russian women. Gene 686:228–236. https://doi.org/10.1016/j.gene.2018.11.042

    Article  CAS  PubMed  Google Scholar 

  37. Elks CE, Perry JR, Sulem P, Chasman DI, Franceschini N, He C, Lunetta KL, Visser JA, Byrne EM, Cousminer DL (2010) Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat Genet 42:1077–1085. https://doi.org/10.1038/ng.714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Sanctis V, Rigon F, Bernasconi S, Bianchin L, Bona G, Bozzola M, Buzi F, De Sanctis C, Tonini G, Radetti G (2019) Age at menarche and menstrual abnormalities in adolescence: does it matter? The evidence from a large survey among Italian secondary schoolgirls. Indian J Pediatr 86:34–41. https://doi.org/10.1007/s12098-018-2822-x

    Article  PubMed  Google Scholar 

  39. Dambhare DG, Wagh SV, Dudhe JY (2012) Age at menarche and menstrual cycle pattern among school adolescent girls in Central India. Global J Health Sci 4:105. https://doi.org/10.5539/gjhs.v4n1p105

    Article  Google Scholar 

  40. Zegeye DT, Megabiaw B, Mulu A (2009) Age at menarche and the menstrual pattern of secondary school adolescents in northwest Ethiopia. BMC Womens Health 9:1–8. https://doi.org/10.1186/1472-6874-9-29

    Article  Google Scholar 

  41. Vihko R, Apter D (1984) Endocrine characteristics of adolescent menstrual cycles: impact of early menarche. J Steroid Biochem 20:231–236. https://doi.org/10.1016/0022-4731(84)90209-7

    Article  CAS  PubMed  Google Scholar 

  42. Dossus L, Kvaskoff M, Bijon A, Fervers B, Boutron-Ruault M-C, Mesrine S, Clavel-Chapelon F (2012) Determinants of age at menarche and time to menstrual cycle regularity in the French E3N cohort. Ann Epidemiol 22:723–730. https://doi.org/10.1016/j.annepidem.2012.07.007

    Article  PubMed  Google Scholar 

  43. Anai T, Miyazaki F, Tomiyasu T, Matsuo T (2001) Risk of irregular menstrual cycles and low peak bone mass during early adulthood associated with age at menarche. Pediatr Int 43:483–488. https://doi.org/10.1046/j.1442-200X.2001.01442.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the contribution of patients, doctors, researchers and teachers to our study. In particular, we would like to thank Wu Hong for counselling and analyzing data.

Funding

The study was supported by National Natural Science Funds (No. 81971354 and No. 81671421), the Korea Research Centre Fund, Sichuan Regional and National Key Research Bases (No. hgzx201803) and Sichuan province natural science foundation, Sichuan Science and Technology Program (No. 2022NSFSC0701).

Author information

Authors and Affiliations

Authors

Contributions

XL and CR participated in study design, statistical analysis, interpretation of data and manuscript writing. Material preparation and data collection were performed by LX, ZW, ZX, NY, YZ and QX. The first draft of the manuscript was written by CR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xu Liangzhi.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, C., Xiaoyan, L., Wenjie, Z. et al. Chromosomal polymorphisms and susceptibility to menstrual disorders: a retrospective analysis of 24,578 women. Arch Gynecol Obstet 308, 1577–1585 (2023). https://doi.org/10.1007/s00404-023-07124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-023-07124-3

Keywords

Navigation