Skip to main content

Advertisement

Log in

Stage-dependent immunity orchestrates AQP4 antibody-guided NMOSD pathology: a role for netting neutrophils with resident memory T cells in situ

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the CNS characterized by the production of disease-specific autoantibodies against aquaporin-4 (AQP4) water channels. Animal model studies suggest that anti-AQP4 antibodies cause a loss of AQP4-expressing astrocytes, primarily via complement-dependent cytotoxicity. Nonetheless, several aspects of the disease remain unclear, including: how anti-AQP4 antibodies cross the blood–brain barrier from the periphery to the CNS; how NMOSD expands into longitudinally extensive transverse myelitis or optic neuritis; how multiphasic courses occur; and how to prevent attacks without depleting circulating anti-AQP4 antibodies, especially when employing B-cell-depleting therapies. To address these knowledge gaps, we conducted a comprehensive ‘stage-dependent’ investigation of immune cell elements in situ in human NMOSD lesions, based on neuropathological techniques for autopsied/biopsied CNS materials. The present study provided three major findings. First, activated or netting neutrophils and melanoma cell adhesion molecule-positive (MCAM+) helper T (TH) 17/cytotoxic T (TC) 17 cells are prominent, and the numbers of these correlate with the size of NMOSD lesions in the initial or early-active stages. Second, forkhead box P3-positive (FOXP3+) regulatory T (Treg) cells are recruited to NMOSD lesions during the initial, early-active or late-active stages, suggesting rapid suppression of proinflammatory autoimmune events in the active stages of NMOSD. Third, compartmentalized resident memory immune cells, including CD103+ tissue-resident memory T (TRM) cells with long-lasting inflammatory potential, are detected under “standby” conditions in all stages. Furthermore, CD103+ TRM cells express high levels of granzyme B/perforin-1 in the initial or early-active stages of NMOSD in situ. We infer that stage-dependent compartmentalized immune traits orchestrate the pathology of anti-AQP4 antibody-guided NMOSD in situ. Our work further suggests that targeting activated/netting neutrophils, MCAM+ TH17/TC17 cells, and CD103+ TRM cells, as well as promoting the expansion of FOXP3+ Treg cells, may be effective in treating and preventing relapses of NMOSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data that support the conclusion of the study are included in the main manuscript and supplementary materials. Additional data are available on reasonable request to the corresponding author.

References

  1. Agasing AM, Wu Q, Khatri B, Borisow N, Ruprecht K, Brandt AU et al (2020) Transcriptomics and proteomics reveal a cooperation between interferon and T-helper 17 cells in neuromyelitis optica. Nat Commun 11:2856. https://doi.org/10.1038/s41467-020-16625-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Behnen M, Leschczyk C, Möller S, Batel T, Klinger M, Solbach W et al (2014) Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1. J Immunol 193:1954–1965. https://doi.org/10.4049/jimmunol.1400478

    Article  CAS  PubMed  Google Scholar 

  3. Beltran E, Gerdes LA, Hansen J, Flierl-Hecht A, Krebs S, Blum H et al (2019) Early adaptive immune activation detected in monozygotic twins with prodromal multiple sclerosis. J Clin Investig 129:4758–4768. https://doi.org/10.1172/JCI128475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boeltz S, Amini P, Anders HJ, Andrade F, Bilyy R, Chatfield S et al (2019) To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ 26:395–408. https://doi.org/10.1038/s41418-018-0261-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198:773–783. https://doi.org/10.1083/jcb.201203170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brucklacher-Waldert V, Stuerner K, Kolster M, Wolthausen J, Tolosa E (2009) Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain 132:3329–3341. https://doi.org/10.1093/brain/awp289

    Article  PubMed  Google Scholar 

  7. Buggert M, Price DA, Mackay LK, Betts MR (2023) Human circulating and tissue-resident memory CD8(+) T cells. Nat Immunol 24:1076–1086. https://doi.org/10.1038/s41590-023-01538-6

    Article  CAS  PubMed  Google Scholar 

  8. Carnero Contentti E, Correale J (2023) Association between infections, the microbiome, vaccination, and neuromyelitis optica spectrum disorder. Mult Scler 29:492–501. https://doi.org/10.1177/13524585221113272

    Article  CAS  PubMed  Google Scholar 

  9. Cassinotto C, Deramond H, Olindo S, Aveillan M, Smadja D, Cabre P (2009) MRI of the spinal cord in neuromyelitis optica and recurrent longitudinal extensive myelitis. J Neuroradiol 36:199–205. https://doi.org/10.1016/j.neurad.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  10. Charabati M, Zandee S, Fournier AP, Tastet O, Thai K, Zaminpeyma R et al (2023) MCAM+ brain endothelial cells contribute to neuroinflammation by recruiting pathogenic CD4+ T lymphocytes. Brain 146:1483–1495. https://doi.org/10.1093/brain/awac389

    Article  PubMed  Google Scholar 

  11. Cheuk S, Schlums H, Gallais Serezal I, Martini E, Chiang SC, Marquardt N et al (2017) CD49a Expression Defines Tissue-Resident CD8(+) T Cells Poised for Cytotoxic Function in Human Skin. Immunity 46:287–300. https://doi.org/10.1016/j.immuni.2017.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cree BAC, Bennett JL, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk DM et al (2019) Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 394:1352–1363. https://doi.org/10.1016/S0140-6736(19)31817-3

    Article  CAS  PubMed  Google Scholar 

  13. Daniel C, Leppkes M, Munoz LE, Schley G, Schett G, Herrmann M (2019) Extracellular DNA traps in inflammation, injury and healing. Nat Rev Nephrol 15:559–575. https://doi.org/10.1038/s41581-019-0163-2

    Article  CAS  PubMed  Google Scholar 

  14. Dean JW, Helm EY, Fu Z, Xiong L, Sun N, Oliff KN et al (2023) The aryl hydrocarbon receptor cell intrinsically promotes resident memory CD8(+) T cell differentiation and function. Cell Rep 42:111963. https://doi.org/10.1016/j.celrep.2022.111963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Duan T, Verkman AS (2020) Experimental animal models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders: progress and shortcomings. Brain Pathol 30:13–25. https://doi.org/10.1111/bpa.12793

    Article  PubMed  Google Scholar 

  16. Felix CM, Levin MH, Verkman AS (2016) Complement-independent retinal pathology produced by intravitreal injection of neuromyelitis optica immunoglobulin G. J Neuroinflammation 13:275. https://doi.org/10.1186/s12974-016-0746-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Flanagan K, Fitzgerald K, Baker J, Regnstrom K, Gardai S, Bard F et al (2012) Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS ONE 7:e40443. https://doi.org/10.1371/journal.pone.0040443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fousert E, Toes R, Desai J (2020) Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells. https://doi.org/10.3390/cells9040915

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fransen NL, Hsiao CC, van der Poel M, Engelenburg HJ, Verdaasdonk K, Vincenten MCJ et al (2020) Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain 143:1714–1730. https://doi.org/10.1093/brain/awaa117

    Article  PubMed  Google Scholar 

  20. Frieser D, Pignata A, Khajavi L, Shlesinger D, Gonzalez-Fierro C, Nguyen XH et al (2022) Tissue-resident CD8(+) T cells drive compartmentalized and chronic autoimmune damage against CNS neurons. Science translational medicine 14:6157. https://doi.org/10.1126/scitranslmed.abl6157

    Article  CAS  Google Scholar 

  21. Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z et al (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Science translational medicine 3:7320. https://doi.org/10.1126/scitranslmed.3001201

    Article  Google Scholar 

  22. Geginat J, Vasco C, Gruarin P, Bonnal R, Rossetti G, Silvestri Y et al (2023) Eomesodermin-expressing type 1 regulatory (EOMES(+) Tr1)-like T cells: Basic biology and role in immune-mediated diseases. Eur J Immunol 53:e2149775. https://doi.org/10.1002/eji.202149775

    Article  CAS  PubMed  Google Scholar 

  23. Gredler V, Mader S, Schanda K, Hegen H, Di Pauli F, Kuenz B et al (2013) Clinical and immunological follow-up of B-cell depleting therapy in CNS demyelinating diseases. J Neurol Sci 328:77–82. https://doi.org/10.1016/j.jns.2013.02.024

    Article  PubMed  Google Scholar 

  24. Hametner S, Wimmer I, Haider L, Pfeifenbring S, Bruck W, Lassmann H (2013) Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 74:848–861. https://doi.org/10.1002/ana.23974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herwerth M, Kalluri SR, Srivastava R, Kleele T, Kenet S, Illes Z et al (2016) In vivo imaging reveals rapid astrocyte depletion and axon damage in a model of neuromyelitis optica-related pathology. Ann Neurol 79:794–805. https://doi.org/10.1002/ana.24630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hinson SR, McKeon A, Fryer JP, Apiwattanakul M, Lennon VA, Pittock SJ (2009) Prediction of neuromyelitis optica attack severity by quantitation of complement-mediated injury to aquaporin-4-expressing cells. Arch Neurol 66:1164–1167. https://doi.org/10.1001/archneurol.2009.188

    Article  PubMed  Google Scholar 

  27. Hinson SR, Romero MF, Popescu BF, Lucchinetti CF, Fryer JP, Wolburg H et al (2012) Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci U S A 109:1245–1250. https://doi.org/10.1073/pnas.1109980108

    Article  PubMed  Google Scholar 

  28. Hokari M, Yokoseki A, Arakawa M, Saji E, Yanagawa K, Yanagimura F et al (2016) Clinicopathological features in anterior visual pathway in neuromyelitis optica. Ann Neurol 79:605–624. https://doi.org/10.1002/ana.24608

    Article  CAS  PubMed  Google Scholar 

  29. Hombrink P, Helbig C, Backer RA, Piet B, Oja AE, Stark R et al (2016) Programs for the persistence, vigilance and control of human CD8(+) lung-resident memory T cells. Nat Immunol 17:1467–1478. https://doi.org/10.1038/ni.3589

    Article  CAS  PubMed  Google Scholar 

  30. Horie M, Watanabe K, Bepari AK, Nashimoto J, Araki K, Sano H et al (2014) Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice. Eur J Neurosci 40:3458–3471. https://doi.org/10.1111/ejn.12711

    Article  PubMed  Google Scholar 

  31. Ikeguchi R, Shimizu Y, Kondo A, Kanda N, So H, Kojima H et al (2021) Melanoma Cell Adhesion Molecule Expressing Helper T Cells in CNS Inflammatory Demyelinating Diseases. Neurology(R) neuroimmunology & neuroinflammation 8: e1069. https://doi.org/10.1212/NXI.0000000000001069

  32. Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T et al (2019) Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565:246–250. https://doi.org/10.1038/s41586-018-0824-5

    Article  CAS  PubMed  Google Scholar 

  33. Jarius S, Wildemann B (2013) Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol 23:661–683. https://doi.org/10.1111/bpa.12084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawachi I, Lassmann H (2017) Neurodegeneration in multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry 88:137–145. https://doi.org/10.1136/jnnp-2016-313300

    Article  PubMed  Google Scholar 

  35. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M et al (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175. https://doi.org/10.1038/nm1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T et al (2009) Neuromyelitis optica: Passive transfer to rats by human immunoglobulin. Biochem Biophys Res Commun 386:623–627. https://doi.org/10.1016/j.bbrc.2009.06.085

    Article  CAS  PubMed  Google Scholar 

  37. Kinoshita M, Ogawa Y, Hama N, Ujiie I, Hasegawa A, Nakajima S et al (2021) Neutrophils initiate and exacerbate Stevens-Johnson syndrome and toxic epidermal necrolysis. Science translational medicine. https://doi.org/10.1126/scitranslmed.aax2398

    Article  PubMed  PubMed Central  Google Scholar 

  38. Korn T, Kallies A (2017) T cell responses in the central nervous system. Nat Rev Immunol 17:179–194. https://doi.org/10.1038/nri.2016.144

    Article  CAS  PubMed  Google Scholar 

  39. Kuhlmann T, Ludwin S, Prat A, Antel J, Bruck W, Lassmann H (2017) An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol 133:13–24. https://doi.org/10.1007/s00401-016-1653-y

    Article  CAS  PubMed  Google Scholar 

  40. Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J et al (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Science translational medicine 3:7319. https://doi.org/10.1126/scitranslmed.3001180

    Article  Google Scholar 

  41. Laridan E, Denorme F, Desender L, François O, Andersson T, Deckmyn H et al (2017) Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 82:223–232. https://doi.org/10.1002/ana.24993

    Article  CAS  PubMed  Google Scholar 

  42. Larochelle C, Cayrol R, Kebir H, Alvarez JI, Lecuyer MA, Ifergan I et al (2012) Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain 135:2906–2924. https://doi.org/10.1093/brain/aws212

    Article  PubMed  Google Scholar 

  43. Larochelle C, Lecuyer MA, Alvarez JI, Charabati M, Saint-Laurent O, Ghannam S et al (2015) Melanoma cell adhesion molecule-positive CD8 T lymphocytes mediate central nervous system inflammation. Ann Neurol 78:39–53. https://doi.org/10.1002/ana.24415

    Article  CAS  PubMed  Google Scholar 

  44. Leffler J, Martin M, Gullstrand B, Tyden H, Lood C, Truedsson L et al (2012) Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol 188:3522–3531. https://doi.org/10.4049/jimmunol.1102404

    Article  CAS  PubMed  Google Scholar 

  45. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202:473–477. https://doi.org/10.1084/jem.20050304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K et al (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364:2106–2112. https://doi.org/10.1016/S0140-6736(04)17551-X

    Article  CAS  PubMed  Google Scholar 

  47. Li J, Patil RV, Verkman AS (2002) Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Invest Ophthalmol Vis Sci 43:573–579

    PubMed  Google Scholar 

  48. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM et al (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125:1450–1461. https://doi.org/10.1093/brain/awf151

    Article  PubMed  Google Scholar 

  49. Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H et al (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365:2188–2197. https://doi.org/10.1056/NEJMoa1100648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Machado-Santos J, Saji E, Troscher AR, Paunovic M, Liblau R, Gabriely G et al (2018) The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 141:2066–2082. https://doi.org/10.1093/brain/awy151

    Article  PubMed  PubMed Central  Google Scholar 

  51. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104. https://doi.org/10.1093/brain/awm038

    Article  PubMed  Google Scholar 

  52. Merino-Vico A, Frazzei G, van Hamburg JP, Tas SW (2023) Targeting B cells and plasma cells in autoimmune diseases: From established treatments to novel therapeutic approaches. Eur J Immunol 53:e2149675. https://doi.org/10.1002/eji.202149675

    Article  CAS  PubMed  Google Scholar 

  53. Middleton EA, He XY, Denorme F, Campbell RA, Ng D, Salvatore SP et al (2020) Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 136:1169–1179. https://doi.org/10.1182/blood.2020007008

    Article  CAS  PubMed  Google Scholar 

  54. Murata H, Kinoshita M, Yasumizu Y, Motooka D, Beppu S, Shiraishi N et al (2022) Cell-Free DNA Derived From Neutrophils Triggers Type 1 Interferon Signature in Neuromyelitis Optica Spectrum Disorder. Neurology(R) neuroimmunology & neuroinflammation 9: e1149. https://doi.org/10.1212/NXI.0000000000001149

  55. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180. https://doi.org/10.1523/JNEUROSCI.17-01-00171.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Panduro M, Benoist C, Mathis D (2016) Tissue Tregs. Annu Rev Immunol 34:609–633. https://doi.org/10.1146/annurev-immunol-032712-095948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18:134–147. https://doi.org/10.1038/nri.2017.105

    Article  CAS  PubMed  Google Scholar 

  58. Pohl M, Fischer MT, Mader S, Schanda K, Kitic M, Sharma R et al (2011) Pathogenic T cell responses against aquaporin 4. Acta Neuropathol 122:21–34. https://doi.org/10.1007/s00401-011-0824-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pohl M, Kawakami N, Kitic M, Bauer J, Martins R, Fischer MT et al (2013) T cell-activation in neuromyelitis optica lesions plays a role in their formation. Acta Neuropathol Commun 1:85. https://doi.org/10.1186/2051-5960-1-85

    Article  PubMed  PubMed Central  Google Scholar 

  60. Radermecker C, Detrembleur N, Guiot J, Cavalier E, Henket M, d’Emal C et al (2020) Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J Exp Med. https://doi.org/10.1084/jem.20201012

    Article  PubMed  PubMed Central  Google Scholar 

  61. Radermecker C, Hego A, Vanwinge C, Marichal T (2022) Methods to Detect Neutrophil Extracellular Traps in Asthma. Methods Mol Biol 2506:281–295. https://doi.org/10.1007/978-1-0716-2364-0_20

    Article  CAS  PubMed  Google Scholar 

  62. Ratelade J, Asavapanumas N, Ritchie AM, Wemlinger S, Bennett JL, Verkman AS (2013) Involvement of antibody-dependent cell-mediated cytotoxicity in inflammatory demyelination in a mouse model of neuromyelitis optica. Acta Neuropathol 126:699–709. https://doi.org/10.1007/s00401-013-1172-z

    Article  PubMed  PubMed Central  Google Scholar 

  63. Roemer SF, Parisi JE, Lennon VA, Benarroch EE, Lassmann H, Bruck W et al (2007) Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130:1194–1205. https://doi.org/10.1093/brain/awl371

    Article  PubMed  Google Scholar 

  64. Saadoun S, Bridges LR, Verkman AS, Papadopoulos MC (2012) Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions. NeuroReport 23:1044–1047. https://doi.org/10.1097/WNR.0b013e32835ab480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saadoun S, Waters P, MacDonald C, Bell BA, Vincent A, Verkman AS et al (2012) Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann Neurol 71:323–333. https://doi.org/10.1002/ana.22686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saji E, Arakawa M, Yanagawa K, Toyoshima Y, Yokoseki A, Okamoto K et al (2013) Cognitive impairment and cortical degeneration in neuromyelitis optica. Ann Neurol 73:65–76. https://doi.org/10.1002/ana.23721

    Article  PubMed  Google Scholar 

  67. Serizawa K, Miyake S, Katsura Y, Yorozu K, Kurasawa M, Tomizawa-Shinohara H et al (2023) Intradermal AQP4 peptide immunization induces clinical features of neuromyelitis optica spectrum disorder in mice. J Neuroimmunol 380:578109. https://doi.org/10.1016/j.jneuroim.2023.578109

    Article  CAS  PubMed  Google Scholar 

  68. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I et al (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15:946–950. https://doi.org/10.1038/nm.1999

    Article  CAS  PubMed  Google Scholar 

  69. Tadie JM, Bae HB, Jiang S, Park DW, Bell CP, Yang H et al (2013) HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol 304:L342-349. https://doi.org/10.1152/ajplung.00151.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tahara M, Oeda T, Okada K, Kiriyama T, Ochi K, Maruyama H et al (2020) Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 19:298–306. https://doi.org/10.1016/S1474-4422(20)30066-1

    Article  CAS  PubMed  Google Scholar 

  71. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology 17:162–173. https://doi.org/10.1016/s1474-4422(17)30470-2

    Article  PubMed  Google Scholar 

  72. Uzawa A, Masahiro M, Kuwabara S (2014) Cytokines and chemokines in neuromyelitis optica: pathogenetic and therapeutic implications. Brain Pathol 24:67–73. https://doi.org/10.1111/bpa.12097

    Article  CAS  PubMed  Google Scholar 

  73. Uzawa A, Mori M, Arai K, Sato Y, Hayakawa S, Masuda S et al (2010) Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler 16:1443–1452. https://doi.org/10.1177/1352458510379247

    Article  CAS  PubMed  Google Scholar 

  74. Van Avondt K, van der Linden M, Naccache PH, Egan DA, Meyaard L (2016) Signal Inhibitory Receptor on Leukocytes-1 Limits the Formation of Neutrophil Extracellular Traps, but Preserves Intracellular Bacterial Killing. J Immunol 196:3686–3694. https://doi.org/10.4049/jimmunol.1501650

    Article  CAS  PubMed  Google Scholar 

  75. van Dam LS, Kraaij T, Kamerling SWA, Bakker JA, Scherer UH, Rabelink TJ et al (2019) Intrinsically Distinct Role of Neutrophil Extracellular Trap Formation in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis Compared to Systemic Lupus Erythematosus. Arthritis Rheumatol 71:2047–2058. https://doi.org/10.1002/art.41047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vandereyken K, Sifrim A, Thienpont B, Voet T (2023) Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet 24:494–515. https://doi.org/10.1038/s41576-023-00580-2

    Article  CAS  PubMed  Google Scholar 

  77. Varrin-Doyer M, Spencer CM, Schulze-Topphoff U, Nelson PA, Stroud RM, Cree BA et al (2012) Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann Neurol 72:53–64. https://doi.org/10.1002/ana.23651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vincent T, Saikali P, Cayrol R, Roth AD, Bar-Or A, Prat A et al (2008) Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment. J Immunol 181:5730–5737. https://doi.org/10.4049/jimmunol.181.8.5730

    Article  CAS  PubMed  Google Scholar 

  79. Vincenti I, Page N, Steinbach K, Yermanos A, Lemeille S, Nunez N et al (2022) Tissue-resident memory CD8(+) T cells cooperate with CD4(+) T cells to drive compartmentalized immunopathology in the CNS. Science translational medicine 14:6058. https://doi.org/10.1126/scitranslmed.abl6058

    Article  CAS  Google Scholar 

  80. Wang H, Wang K, Wang C, Xu F, Zhong X, Qiu W et al (2013) Cerebrospinal fluid high-mobility group box protein 1 in neuromyelitis optica and multiple sclerosis. NeuroImmunoModulation 20:113–118. https://doi.org/10.1159/000345994

    Article  CAS  PubMed  Google Scholar 

  81. Wang HH, Dai YQ, Qiu W, Lu ZQ, Peng FH, Wang YG et al (2011) Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse. J Clin Neurosci 18:1313–1317. https://doi.org/10.1016/j.jocn.2011.01.031

    Article  CAS  PubMed  Google Scholar 

  82. Wang KC, Tsai CP, Lee CL, Chen SY, Chin LT, Chen SJ (2012) Elevated plasma high-mobility group box 1 protein is a potential marker for neuromyelitis optica. Neuroscience 226:510–516. https://doi.org/10.1016/j.neuroscience.2012.08.041

    Article  CAS  PubMed  Google Scholar 

  83. Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V (2015) Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349:316–320. https://doi.org/10.1126/science.aaa8064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T et al (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85:177–189. https://doi.org/10.1212/WNL.0000000000001729

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG (2006) Revised diagnostic criteria for neuromyelitis optica. Neurology 66:1485–1489. https://doi.org/10.1212/01.wnl.0000216139.44259.74

    Article  CAS  PubMed  Google Scholar 

  86. Winkler A, Wrzos C, Haberl M, Weil MT, Gao M, Mobius W et al (2021) Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration. J Clin Investig. https://doi.org/10.1172/JCI141694

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yamamura T, Kleiter I, Fujihara K, Palace J, Greenberg B, Zakrzewska-Pniewska B et al (2019) Trial of Satralizumab in Neuromyelitis Optica Spectrum Disorder. N Engl J Med 381:2114–2124. https://doi.org/10.1056/NEJMoa1901747

    Article  CAS  PubMed  Google Scholar 

  88. Yanagawa K, Kawachi I, Toyoshima Y, Yokoseki A, Arakawa M, Hasegawa A et al (2009) Pathologic and immunologic profiles of a limited form of neuromyelitis optica with myelitis. Neurology 73:1628–1637. https://doi.org/10.1212/WNL.0b013e3181c1deb9

    Article  CAS  PubMed  Google Scholar 

  89. Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD et al (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 18:1386–1393. https://doi.org/10.1038/nm.2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yokoseki A, Saji E, Arakawa M, Kosaka T, Hokari M, Toyoshima Y et al (2014) Hypertrophic pachymeningitis: significance of myeloperoxidase anti-neutrophil cytoplasmic antibody. Brain 137:520–536. https://doi.org/10.1093/brain/awt314

    Article  PubMed  Google Scholar 

  91. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H (2017) Loss of “homeostatic” microglia and patterns of their activation in active multiple sclerosis. Brain 140:1900–1913. https://doi.org/10.1093/brain/awx113

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zrzavy T, Machado-Santos J, Christine S, Baumgartner C, Weiner HL, Butovsky O et al (2018) Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathol 28:791–805. https://doi.org/10.1111/bpa.12583

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Kawaguchi, T. Yahata, and M. Kaneko (Department of Neurology, Brain Research Institute, Niigata University, Japan) for technical assistance with neuropathological and immunological investigations and BP Morgan (School of Medicine, Cardiff University, UK) for providing the complement antibody.

Funding

This work was supported in part by JSPS KAKENHI Grant Numbers JP20K07899 (IK), JP23K06923 (IK) and JP21K07412 (ES), and by the MHLW Research Program on Rare and Intractable Diseases, Grant/Award (JPMH 20FC1030, JPMH 23FC1009) (IK).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: ES, MN, IK; acquisition of data; AN, FY, ES, HS, YT, KY, MA, MH, AY, TW, KO, H. Takebayashi, CF, KI, YT, SO, MY, H. Takahashi, MN, HI, AK, OO, IK; statistical analysis; AN, FY, ES, IK; interpretation of data: AN, FY, ES, HS, YT, KY, MA, MH, AY, TW, KO, H. Takebayashi, MY, H. Takahashi, MN, HI, AK, OO, IK; critical review for important intellectual content: all authors; all authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Izumi Kawachi.

Ethics declarations

Conflict of interest

AN, FY, ES, HS, YT, KY, MA, MH, AY, TW, KO, H.Takebayashi, CF, KI, YT, SO, MY, H. Takahashi, MN, HI, AK, and OO have no competing interests to disclose. IK reports receiving funding for research, travel, and/or speaker’s honoraria from Chugai Pharmaceuticals, Novartis Pharma, Biogen, Alexion Pharmaceuticals, Mitsubishi Tanabe Pharma, Takeda Pharmaceutical Company, Teijin Pharma, Argenx, and Daiichi-Sankyo and is a scientific advisory board member for Mitsubishi Tanabe Pharma and Chugai Pharmaceuticals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 8866 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, A., Yanagimura, F., Saji, E. et al. Stage-dependent immunity orchestrates AQP4 antibody-guided NMOSD pathology: a role for netting neutrophils with resident memory T cells in situ. Acta Neuropathol 147, 76 (2024). https://doi.org/10.1007/s00401-024-02725-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00401-024-02725-x

Keywords

Navigation