Skip to main content

Advertisement

Log in

Loss of TDP-43 splicing repression occurs early in the aging population and is associated with Alzheimer’s disease neuropathologic changes and cognitive decline

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

LATE-NC, the neuropathologic changes of limbic-predominant age-related TAR DNA-binding protein 43 kDa (TDP-43) encephalopathy are frequently associated with Alzheimer’s disease (AD) and cognitive impairment in older adults. The association of TDP-43 proteinopathy with AD neuropathologic changes (ADNC) and its impact on specific cognitive domains are not fully understood and whether loss of TDP-43 function occurs early in the aging brain remains unknown. Here, using a large set of autopsies from the Baltimore Longitudinal Study of Aging (BLSA) and another younger cohort, we were able to study brains from subjects 21–109 years of age. Examination of these brains show that loss of TDP-43 splicing repression, as judged by TDP-43 nuclear clearance and expression of a cryptic exon in HDGFL2, first occurs during the 6th decade, preceding by a decade the appearance of TDP-43+ neuronal cytoplasmic inclusions (NCIs). We corroborated this observation using a monoclonal antibody to demonstrate a cryptic exon-encoded neoepitope within HDGFL2 in neurons exhibiting nuclear clearance of TDP-43. TDP-43 nuclear clearance is associated with increased burden of tau pathology. Age at death, female sex, high CERAD neuritic plaque score, and high Braak neurofibrillary stage significantly increase the odds of LATE-NC. Faster rates of cognitive decline on verbal memory (California Verbal Learning Test immediate recall), visuospatial ability (Card Rotations Test), mental status (MMSE) and semantic fluency (Category Fluency Test) were associated with LATE-NC. Notably, the effects of LATE-NC on verbal memory and visuospatial ability are independent of ADNC. However, the effects of TDP-43 nuclear clearance in absence of NCI on the longitudinal trajectories and levels of cognitive measures are not significant. These results establish that loss of TDP-43 splicing repression is an early event occurring in the aging population during the development of TDP-43 proteinopathy and is associated with increased tau pathology. Furthermore, LATE-NC correlates with high levels of ADNC but also has an impact on specific memory and visuospatial functions in aging that is independent of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data are included in the manuscript and supplementary data. Individual demographic, clinical, and pathologic data of the participants are available from the authors upon reasonable request, due to privacy protection policies.

References

  1. Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445. https://doi.org/10.1002/ana.21154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. American Psychological Association (1987) Diagnostic and statistical manual of mental health disorders. American Psychiatric Association, Washington DC

    Google Scholar 

  3. Arnold SJ, Dugger BN, Beach TG (2013) TDP-43 deposition in prospectively followed, cognitively normal elderly individuals: correlation with argyrophilic grains but not other concomitant pathologies. Acta Neuropathol 126:51–57. https://doi.org/10.1007/s00401-013-1110-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bailly M, Destrieux C, Hommet C, Mondon K, Cottier JP, Beaufils E et al (2015) Precuneus and cingulate cortex atrophy and hypometabolism in patients with alzheimer’s disease and mild cognitive impairment: MRI and (18)F-FDG PET quantitative analysis using FreeSurfer. Biomed Res Int 2015:583931. https://doi.org/10.1155/2015/583931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bell WR, An Y, Kageyama Y, English C, Rudow GL, Pletnikova O et al (2019) Neuropathologic, genetic, and longitudinal cognitive profiles in primary age-related tauopathy (PART) and Alzheimer’s disease. Alzheimers Dement 15:8–16. https://doi.org/10.1016/j.jalz.2018.07.215

    Article  PubMed  Google Scholar 

  6. Bennett DA, Wilson RS, Boyle PA, Buchman AS, Schneider JA (2012) Relation of neuropathology to cognition in persons without cognitive impairment. Ann Neurol 72:599–609. https://doi.org/10.1002/ana.23654

    Article  PubMed  PubMed Central  Google Scholar 

  7. Benton AL (1968) Differential behavioral effects in frontal lobe disease. Neuropsychologia 6:53–60. https://doi.org/10.1016/0028-3932(68)90038-9

    Article  Google Scholar 

  8. Boccia M, Sulpizio V, Nemmi F, Guariglia C, Galati G (2017) Direct and indirect parieto-medial temporal pathways for spatial navigation in humans: evidence from resting-state functional connectivity. Brain Struct Funct 222:1945–1957. https://doi.org/10.1007/s00429-016-1318-6

    Article  PubMed  Google Scholar 

  9. Boyle PA, Wang T, Yu L, Wilson RS, Dawe R, Arfanakis K et al (2021) To what degree is late life cognitive decline driven by age-related neuropathologies? Brain 144:2166–2175. https://doi.org/10.1093/brain/awab092

    Article  PubMed  PubMed Central  Google Scholar 

  10. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/bf00308809

    Article  CAS  PubMed  Google Scholar 

  11. Braak H, Del Tredici K (2018) Anterior cingulate cortex TDP-43 pathology in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 77:74–83. https://doi.org/10.1093/jnen/nlx104

    Article  PubMed  Google Scholar 

  12. Braak H, Ludolph AC, Neumann M, Ravits J, Del Tredici K (2017) Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis. Acta Neuropathol 133:79–90. https://doi.org/10.1007/s00401-016-1633-2

    Article  CAS  PubMed  Google Scholar 

  13. Brown AL, Wilkins OG, Keuss MJ, Hill SE, Zanovello M, Lee WC et al (2022) TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature 603:131–137. https://doi.org/10.1038/s41586-022-04436-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Butler Pagnotti RM, Pudumjee SB, Cross CL, Miller JB (2023) Cognitive and clinical characteristics of patients with limbic-predominant age-related TDP-43 encephalopathy. Neurology 100:e2027–e2035. https://doi.org/10.1212/wnl.0000000000207159

    Article  PubMed  PubMed Central  Google Scholar 

  15. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I et al (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128:755–766. https://doi.org/10.1007/s00401-014-1349-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cykowski MD, Arumanayagam AS, Powell SZ, Rivera AL, Abner EL, Roman GC et al (2022) Patterns of amygdala region pathology in LATE-NC: subtypes that differ with regard to TDP-43 histopathology, genetic risk factors, and comorbid pathologies. Acta Neuropathol 143:531–545. https://doi.org/10.1007/s00401-022-02416-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davidson YS, Raby S, Foulds PG, Robinson A, Thompson JC, Sikkink S et al (2011) TDP-43 pathological changes in early onset familial and sporadic Alzheimer’s disease, late onset Alzheimer’s disease and Down’s syndrome: association with age, hippocampal sclerosis and clinical phenotype. Acta Neuropathol 122:703–713. https://doi.org/10.1007/s00401-011-0879-y

    Article  PubMed  Google Scholar 

  18. Delis DKJ, Kaplan E, Ober B (1987) California verbal learning test, research. The Psychological Corporation, New York

    Google Scholar 

  19. Dowling NM, Tomaszewski Farias S, Reed BR, Sonnen JA, Strauss ME, Schneider JA et al (2011) Neuropathological associates of multiple cognitive functions in two community-based cohorts of older adults. J Int Neuropsychol Soc 17:602–614. https://doi.org/10.1017/s1355617710001426

    Article  PubMed  PubMed Central  Google Scholar 

  20. Driscoll I, Troncoso JC, Rudow G, Sojkova J, Pletnikova O, Zhou Y et al (2012) Correspondence between in vivo (11)C-PiB-PET amyloid imaging and postmortem, region-matched assessment of plaques. Acta Neuropathol 124:823–831. https://doi.org/10.1007/s00401-012-1025-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dugan AJ, Nelson PT, Katsumata Y, Shade LMP, Boehme KL, Teylan MA et al (2021) Analysis of genes (TMEM106B, GRN, ABCC9, KCNMB2, and APOE) implicated in risk for LATE-NC and hippocampal sclerosis provides pathogenetic insights: a retrospective genetic association study. Acta Neuropathol Commun 9:152. https://doi.org/10.1186/s40478-021-01250-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ekstrom RBH, Horace H (1976) Manual for kit of factor-referenced cognitive tests. Educational testing service, Princeton

    Google Scholar 

  23. Estades Ayuso V, Pickles S, Todd T, Yue M, Jansen-West K, Song Y et al (2023) TDP-43-regulated cryptic RNAs accumulate in Alzheimer’s disease brains. Mol Neurodegener 18:57. https://doi.org/10.1186/s13024-023-00646-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Filon JR, Intorcia AJ, Sue LI, Vazquez Arreola E, Wilson J, Davis KJ et al (2016) Gender differences in Alzheimer disease: brain atrophy, histopathology burden, and cognition. J Neuropathol Exp Neurol 75:748–754. https://doi.org/10.1093/jnen/nlw047

    Article  PubMed  PubMed Central  Google Scholar 

  25. Flanagan ME, Cholerton B, Latimer CS, Hemmy LS, Edland SD, Montine KS et al (2018) TDP-43 neuropathologic associations in the Nun study and the Honolulu-Asia aging study. J Alzheimers Dis 66:1549–1558. https://doi.org/10.3233/jad-180162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  CAS  PubMed  Google Scholar 

  27. Fuld P (1978) Psychological testing in the differential diagnosis of the dementias. Alzheimer’s Dis Senile Demen Relat Disord 7:185–193

    Google Scholar 

  28. Hall A, Pekkala T, Polvikoski T, van Gils M, Kivipelto M, Lötjönen J et al (2019) Prediction models for dementia and neuropathology in the oldest old: the Vantaa 85+ cohort study. Alzheimers Res Ther 11:11. https://doi.org/10.1186/s13195-018-0450-3

    Article  PubMed  PubMed Central  Google Scholar 

  29. Harrison WT, Lusk JB, Liu B, Ervin JF, Johnson KG, Green CL et al (2021) Limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is independently associated with dementia and strongly associated with arteriolosclerosis in the oldest-old. Acta Neuropathol 142:917–919. https://doi.org/10.1007/s00401-021-02360-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hawes Z, Sokolowski HM, Ononye CB, Ansari D (2019) Neural underpinnings of numerical and spatial cognition: an fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neurosci Biobehav Rev 103:316–336. https://doi.org/10.1016/j.neubiorev.2019.05.007

    Article  PubMed  Google Scholar 

  31. Hu WT, Josephs KA, Knopman DS, Boeve BF, Dickson DW, Petersen RC et al (2008) Temporal lobar predominance of TDP-43 neuronal cytoplasmic inclusions in Alzheimer disease. Acta Neuropathol 116:215–220. https://doi.org/10.1007/s00401-008-0400-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu YT, Boonstra J, McGurran H, Stormmesand J, Sluiter A, Balesar R et al (2021) Sex differences in the neuropathological hallmarks of Alzheimer’s disease: focus on cognitively intact elderly individuals. Neuropathol Appl Neurobiol 47:958–966. https://doi.org/10.1111/nan.12729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hunter S, Hokkanen SRK, Keage HAD, Fleming J, Minett T, Polvikoski T et al (2020) TDP-43 related neuropathologies and phosphorylation state: associations with age and clinical dementia in the Cambridge City over-75s cohort. J Alzheimers Dis 75:337–350. https://doi.org/10.3233/jad-191093

    Article  CAS  PubMed  Google Scholar 

  34. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13. https://doi.org/10.1016/j.jalz.2011.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  35. Irwin KE, Jasin P, Braunstein KE, Sinha I, Bowden KD, Moghekar A et al (2023) A fluid biomarker reveals loss of TDP-43 splicing repression in pre-symptomatic ALS. Nat Med (in press)

  36. James BD, Wilson RS, Boyle PA, Trojanowski JQ, Bennett DA, Schneider JA (2016) TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain 139:2983–2993. https://doi.org/10.1093/brain/aww224

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jefferson-George KS, Wolk DA, Lee EB, McMillan CT (2017) Cognitive decline associated with pathological burden in primary age-related tauopathy. Alzheimers Dement 13:1048–1053. https://doi.org/10.1016/j.jalz.2017.01.028

    Article  PubMed  PubMed Central  Google Scholar 

  38. Johnson DK, Storandt M, Morris JC, Galvin JE (2009) Longitudinal study of the transition from healthy aging to Alzheimer disease. Arch Neurol 66:1254–1259. https://doi.org/10.1001/archneurol.2009.158

    Article  PubMed  PubMed Central  Google Scholar 

  39. Josephs KA (2018) Fitting TDP-43 into the APOE ε4 and neurodegeneration story. Lancet Neurol 17:735–737. https://doi.org/10.1016/s1474-4422(18)30288-6

    Article  PubMed  PubMed Central  Google Scholar 

  40. Josephs KA, Murray ME, Tosakulwong N, Weigand SD, Serie AM, Perkerson RB et al (2019) Pathological, imaging and genetic characteristics support the existence of distinct TDP-43 types in non-FTLD brains. Acta Neuropathol 137:227–238. https://doi.org/10.1007/s00401-018-1951-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Josephs KA, Whitwell JL, Knopman DS, Hu WT, Stroh DA, Baker M et al (2008) Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70:1850–1857. https://doi.org/10.1212/01.wnl.0000304041.09418.b1

    Article  CAS  PubMed  Google Scholar 

  42. Josephs KA, Whitwell JL, Weigand SD, Murray ME, Tosakulwong N, Liesinger AM et al (2014) TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol 127:811–824. https://doi.org/10.1007/s00401-014-1269-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kadokura A, Yamazaki T, Lemere CA, Takatama M, Okamoto K (2009) Regional distribution of TDP-43 inclusions in Alzheimer disease (AD) brains: their relation to AD common pathology. Neuropathology 29:566–573. https://doi.org/10.1111/j.1440-1789.2009.01017.x

    Article  PubMed  Google Scholar 

  44. Kapasi A, Yu L, Boyle PA, Barnes LL, Bennett DA, Schneider JA (2020) Limbic-predominant age-related TDP-43 encephalopathy, ADNC pathology, and cognitive decline in aging. Neurology 95:e1951–e1962. https://doi.org/10.1212/wnl.0000000000010454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Keage HA, Hunter S, Matthews FE, Ince PG, Hodges J, Hokkanen SR et al (2014) TDP-43 pathology in the population: prevalence and associations with dementia and age. J Alzheimers Dis 42:641–650. https://doi.org/10.3233/jad-132351

    Article  CAS  PubMed  Google Scholar 

  46. Klim JR, Williams LA, Limone F, Guerra San Juan I, Davis-Dusenbery BN, Mordes DA et al (2019) ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci 22:167–179. https://doi.org/10.1038/s41593-018-0300-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230. https://doi.org/10.1038/nrn3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin S (2020) Visuospatial memory alteration in Alzheimer’s disease. Neurosci Bull 36:829–830. https://doi.org/10.1007/s12264-020-00560-0

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lin WL, Castanedes-Casey M, Dickson DW (2009) Transactivation response DNA-binding protein 43 microvasculopathy in frontotemporal degeneration and familial Lewy body disease. J Neuropathol Exp Neurol 68:1167–1176. https://doi.org/10.1097/NEN.0b013e3181baacec

    Article  CAS  PubMed  Google Scholar 

  50. Ling JP, Pletnikova O, Troncoso JC, Wong PC (2015) TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349:650–655. https://doi.org/10.1126/science.aab0983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lopez OL, Kofler J, Chang Y, Berman SB, Becker JT, Sweet RA et al (2020) Hippocampal sclerosis, TDP-43, and the duration of the symptoms of dementia of AD patients. Ann Clin Transl Neurol 7:1546–1556. https://doi.org/10.1002/acn3.51135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma XR, Prudencio M, Koike Y, Vatsavayai SC, Kim G, Harbinski F et al (2022) TDP-43 represses cryptic exon inclusion in the FTD-ALS gene UNC13A. Nature 603:124–130. https://doi.org/10.1038/s41586-022-04424-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Malek-Ahmadi M, Lu S, Chan Y, Perez SE, Chen K, Mufson EJ (2017) Cognitive domain dispersion association with Alzheimer’s disease pathology. J Alzheimers Dis 58:575–583. https://doi.org/10.3233/jad-161233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McCarrey AC, An Y, Kitner-Triolo MH, Ferrucci L, Resnick SM (2016) Sex differences in cognitive trajectories in clinically normal older adults. Psychol Aging 31:166–175. https://doi.org/10.1037/pag0000070

    Article  PubMed  PubMed Central  Google Scholar 

  55. McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872. https://doi.org/10.1212/01.wnl.0000187889.17253.b1

    Article  CAS  PubMed  Google Scholar 

  56. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944. https://doi.org/10.1212/wnl.34.7.939

    Article  CAS  PubMed  Google Scholar 

  57. Melamed Z, López-Erauskin J, Baughn MW, Zhang O, Drenner K, Sun Y et al (2019) Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci 22:180–190. https://doi.org/10.1038/s41593-018-0293-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Minogue G, Kawles A, Zouridakis A, Keszycki R, Macomber A, Lubbat V et al (2023) Distinct patterns of hippocampal pathology in Alzheimer’s Disease with transactive response DNA-binding Protein 43. Ann Neurol. https://doi.org/10.1002/ana.26762

    Article  PubMed  Google Scholar 

  59. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486. https://doi.org/10.1212/wnl.41.4.479

    Article  CAS  PubMed  Google Scholar 

  60. Montine TJ, Corrada MM, Kawas C, Bukhari S, White L, Tian L et al (2022) Association of cognition and dementia with neuropathologic changes of Alzheimer disease and other conditions in the oldest-old. Neurology 99:e1067-1078. https://doi.org/10.1212/wnl.0000000000200832

    Article  PubMed  PubMed Central  Google Scholar 

  61. Morris JC (1993) The clinical dementia rating (CDR): current version and scoring rules. Neurology 43:2412–2414. https://doi.org/10.1212/wnl.43.11.2412-a

    Article  CAS  PubMed  Google Scholar 

  62. Nag S, Barnes LL, Yu L, Wilson RS, Bennett DA, Schneider JA (2020) Limbic-predominant age-related TDP-43 encephalopathy in Black and White decedents. Neurology 95:e2056–e2064. https://doi.org/10.1212/wnl.0000000000010602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nag S, Yu L, Boyle PA, Leurgans SE, Bennett DA, Schneider JA (2018) TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease. Acta Neuropathol Commun 6:33. https://doi.org/10.1186/s40478-018-0531-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nag S, Yu L, Capuano AW, Wilson RS, Leurgans SE, Bennett DA et al (2015) Hippocampal sclerosis and TDP-43 pathology in aging and Alzheimer disease. Ann Neurol 77:942–952. https://doi.org/10.1002/ana.24388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nag S, Yu L, Wilson RS, Chen EY, Bennett DA, Schneider JA (2017) TDP-43 pathology and memory impairment in elders without pathologic diagnoses of AD or FTLD. Neurology 88:653–660. https://doi.org/10.1212/wnl.0000000000003610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nana AL, Sidhu M, Gaus SE, Hwang JL, Li L, Park Y et al (2019) Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathol 137:27–46. https://doi.org/10.1007/s00401-018-1942-8

    Article  PubMed  Google Scholar 

  67. Nelson PT, Abner EL, Schmitt FA, Kryscio RJ, Jicha GA, Smith CD et al (2010) Modeling the association between 43 different clinical and pathological variables and the severity of cognitive impairment in a large autopsy cohort of elderly persons. Brain Pathol 20:66–79. https://doi.org/10.1111/j.1750-3639.2008.00244.x

    Article  PubMed  Google Scholar 

  68. Nelson PT, Brayne C, Flanagan ME, Abner EL, Agrawal S, Attems J et al (2022) Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts. Acta Neuropathol 144:27–44. https://doi.org/10.1007/s00401-022-02444-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K et al (2019) Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142:1503–1527. https://doi.org/10.1093/brain/awz099

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nelson PT, Lee EB, Cykowski MD, Alafuzoff I, Arfanakis K, Attems J et al (2023) LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol 145:159–173. https://doi.org/10.1007/s00401-022-02524-2

    Article  PubMed  Google Scholar 

  71. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133. https://doi.org/10.1126/science.1134108

    Article  CAS  PubMed  Google Scholar 

  72. Newcombe F (1969) Missile wounds of the brain: a study of psychological deficits. Oxford University Press, Oxford

    Google Scholar 

  73. Parslow DM, Rose D, Brooks B, Fleminger S, Gray JA, Giampietro V et al (2004) Allocentric spatial memory activation of the hippocampal formation measured with fMRI. Neuropsychology 18:450–461. https://doi.org/10.1037/0894-4105.18.3.450

    Article  PubMed  Google Scholar 

  74. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308. https://doi.org/10.1001/archneur.56.3.303

    Article  CAS  PubMed  Google Scholar 

  75. Prudencio M, Humphrey J, Pickles S, Brown AL, Hill SE, Kachergus JM et al (2020) Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. J Clin Invest 130:6080–6092. https://doi.org/10.1172/jci139741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Reitan RM (1992) Trail making test: manual for administration and scoring. Reitan Neuropsychology Laboratory, Tucson

    Google Scholar 

  77. Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C et al (2018) Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 141:2181–2193. https://doi.org/10.1093/brain/awy146

    Article  PubMed  PubMed Central  Google Scholar 

  78. Robinson JL, Richardson H, Xie SX, Suh E, Van Deerlin VM, Alfaro B et al (2021) The development and convergence of co-pathologies in Alzheimer’s disease. Brain 144:953–962. https://doi.org/10.1093/brain/awaa438

    Article  PubMed  PubMed Central  Google Scholar 

  79. Smirnov DS, Salmon DP, Galasko D, Edland SD, Pizzo DP, Goodwill V et al (2022) TDP-43 pathology exacerbates cognitive decline in primary age-related tauopathy. Ann Neurol 92:425–438. https://doi.org/10.1002/ana.26438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Smith VD, Bachstetter AD, Ighodaro E, Roberts K, Abner EL, Fardo DW et al (2018) Overlapping but distinct TDP-43 and tau pathologic patterns in aged hippocampi. Brain Pathol 28:264–273. https://doi.org/10.1111/bpa.12505

    Article  CAS  PubMed  Google Scholar 

  81. Sun M, Bell W, LaClair KD, Ling JP, Han H, Kageyama Y et al (2017) Cryptic exon incorporation occurs in Alzheimer’s brain lacking TDP-43 inclusion but exhibiting nuclear clearance of TDP-43. Acta Neuropathol 133:923–931. https://doi.org/10.1007/s00401-017-1701-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Suthana NA, Ekstrom AD, Moshirvaziri S, Knowlton B, Bookheimer SY (2009) Human hippocampal CA1 involvement during allocentric encoding of spatial information. J Neurosci 29:10512–10519. https://doi.org/10.1523/jneurosci.0621-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tan Q, Yalamanchili HK, Park J, De Maio A, Lu HC, Wan YW et al (2016) Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. Hum Mol Genet 25:5083–5093. https://doi.org/10.1093/hmg/ddw337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800. https://doi.org/10.1212/wnl.58.12.1791

    Article  PubMed  Google Scholar 

  85. Tomé SO, Tsaka G, Ronisz A, Ospitalieri S, Gawor K, Gomes LA et al (2023) TDP-43 pathology is associated with increased tau burdens and seeding. Mol Neurodegener 18:71. https://doi.org/10.1186/s13024-023-00653-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Uchino A, Takao M, Hatsuta H, Sumikura H, Nakano Y, Nogami A et al (2015) Incidence and extent of TDP-43 accumulation in aging human brain. Acta Neuropathol Commun 3:35. https://doi.org/10.1186/s40478-015-0215-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vatsavayai SC, Yoon SJ, Gardner RC, Gendron TF, Vargas JN, Trujillo A et al (2016) Timing and significance of pathological features in C9orf72 expansion-associated frontotemporal dementia. Brain 139:3202–3216. https://doi.org/10.1093/brain/aww250

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wang SJ, Guo Y, Ervin JF, Lusk JB, Luo S (2022) Neuropathological associations of limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) differ between the oldest-old and younger-old. Acta Neuropathol 144:45–57. https://doi.org/10.1007/s00401-022-02432-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Williams OA, An Y, Armstrong NM, Kitner-Triolo M, Ferrucci L, Resnick SM (2020) Profiles of cognitive change in preclinical and prodromal alzheimer’s disease using change-point analysis. J Alzheimers Dis 75:1169–1180. https://doi.org/10.3233/jad-191268

    Article  PubMed  PubMed Central  Google Scholar 

  90. Williams OA, An Y, Armstrong NM, Shafer AT, Helphrey J, Kitner-Triolo M et al (2019) Apolipoprotein E ε4 allele effects on longitudinal cognitive trajectories are sex and age dependent. Alzheimers Dement 15:1558–1567. https://doi.org/10.1016/j.jalz.2019.07.011

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wilson JR, De Fries JC, McClearn GE, Vanderberg SG, Johnson RC, Rashad MN (1975) Cognitive abilities: use of family data as a control to assess sex and age differences in two ethnic groups. Int J Aging Hum Dev 6:261–276. https://doi.org/10.2190/bbjp-xkug-c6ew-kyb7

    Article  CAS  PubMed  Google Scholar 

  92. Wilson RS, Yu L, Trojanowski JQ, Chen EY, Boyle PA, Bennett DA et al (2013) TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol 70:1418–1424. https://doi.org/10.1001/jamaneurol.2013.3961

    Article  PubMed  Google Scholar 

  93. Xu Y (2018) The posterior parietal cortex in adaptive visual processing. Trends Neurosci 41:806–822. https://doi.org/10.1016/j.tins.2018.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang HS, Yu L, White CC, Chibnik LB, Chhatwal JP, Sperling RA et al (2018) Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE ε4 haplotype status: a community-based cohort study. Lancet Neurol 17:773–781. https://doi.org/10.1016/s1474-4422(18)30251-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu L, Wang Z, Du Z, Qi X, Shu H, Liu D et al (2020) Impaired parahippocampal gyrus-orbitofrontal cortex circuit associated with visuospatial memory deficit as a potential biomarker and interventional approach for Alzheimer disease. Neurosci Bull 36:831–844. https://doi.org/10.1007/s12264-020-00498-3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the BLSA participants and families that contributed to brain donation. This study was supported in part by the Intramural Research Program, National Institute on Aging, NIH, the NINDS, NIH Grant R01NS095969 and The Johns Hopkins Alzheimer’s Disease Research Center NIH Grant P30AG066507.

Author information

Authors and Affiliations

Authors

Contributions

KC, JPL, PCW and JCT contributed to the study conception and design. LL and SAD performed autopsies of young cohort subjects. TGB supervised brain consent process. KC, JR, and JCT performed pathologic data collection and analysis. TP and AB performed tissue slide preparation and immunohistochemistry. KC performed immunofluorescent staining, confocal imaging, and RNA in situ hybridization. JPL, PCW, and KI developed and produced the monoclonal antibody targeting the cryptic exon encoded neoepitope in HDGFL2. YA, AM, and SR provided clinical data. YA performed statistical analyses. JPL, PCW, AM, SR, and JCT supervised the project. The first draft of the manuscript was written by KC. All authors reviewed and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juan C. Troncoso.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

This study involving human participants was in accordance with the ethical standards of the institutional and national research committees and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was approved by the JHM Institutional Review Boards (IRB00101384), Institutional Review Board of the National Institutes of Health (03AG0325), and Maryland Department of Health Institutional Review Board (#05-58).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 53 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, K., Ling, J.P., Redding-Ochoa, J. et al. Loss of TDP-43 splicing repression occurs early in the aging population and is associated with Alzheimer’s disease neuropathologic changes and cognitive decline. Acta Neuropathol 147, 4 (2024). https://doi.org/10.1007/s00401-023-02653-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00401-023-02653-2

Keywords

Navigation