Skip to main content

Advertisement

Log in

Pyroptosis in Alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The major neuropathological hallmarks of Alzheimer’s disease (AD) are amyloid β (Aβ) plaques and neurofibrillary tangles (NFT), accompanied by neuroinflammation and neuronal loss. Increasing evidence is emerging for the activation of the canonical NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome in AD. However, the mechanisms leading to neuronal loss in AD and the involvement of glial cells in these processes are still not clear. The aim of this study was to investigate the contribution of pyroptosis, a pro-inflammatory mechanism of cell death downstream of the inflammasome, to neurodegeneration in AD. Immunohistochemistry and biochemical analysis of protein levels were performed on human post-mortem brain tissue. We investigated the presence of cleaved gasdermin D (GSDMD), the pyroptosis effector protein, as well as the NLRP3 inflammasome-forming proteins, in the medial temporal lobe of 23 symptomatic AD, 25 pathologically defined preclinical AD (p-preAD) and 21 non-demented control cases. Cleaved GSDMD was detected in microglia, but also in astrocytes and in few pyramidal neurons in the first sector of the cornu ammonis (CA1) of the hippocampus and the temporal cortex of Brodmann area 36. Only microglia expressed all NLRP3 inflammasome-forming proteins (i.e., ASC, NLRP3, caspase-1). Cleaved GSDMD-positive astrocytes and neurons exhibited caspase-8 and non-canonical inflammasome protein caspase-4, respectively, potentially indicating alternative pathways for GSDMD cleavage. Brains of AD patients exhibited increased numbers of cleaved GSDMD-positive cells. Cleaved GSDMD-positive microglia and astrocytes were found in close proximity to Aβ plaques, while cleaved GSDMD-positive neurons were devoid of NFTs. In CA1, NLRP3-positive microglia and cleaved GSDMD-positive neurons were associated with local neuronal loss, indicating a possible contribution of NLRP3 inflammasome and pyroptosis activation to AD-related neurodegeneration. Taken together, our results suggest cell type-specific activation of pyroptosis in AD and extend the current knowledge about the contribution of neuroinflammation to the neurodegenerative process in AD via a direct link to neuron death by pyroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

All relevant data generated and analyzed in this study are available in this manuscript, online supplementary information or upon reasonable request.

References

  1. Arranz AM, De Strooper B (2019) The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol 18:406–414. https://doi.org/10.1016/S1474-4422(18)30490-3

    Article  CAS  Google Scholar 

  2. Auer RN, Wieloch T, Olsson Y, Siesjö BK (1984) The distribution of hypoglycemic brain damage. Acta Neuropathol 64:177–191. https://doi.org/10.1007/BF00688108

    Article  CAS  Google Scholar 

  3. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. https://doi.org/10.1007/s00401-006-0127-z

    Article  Google Scholar 

  4. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/bf00308809

    Article  CAS  Google Scholar 

  5. Cacace R, Sleegers K, Van BC (2016) Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimer’s Dement 12:733–748. https://doi.org/10.1016/j.jalz.2016.01.012

    Article  Google Scholar 

  6. Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS et al (2017) Necroptosis activation in Alzheimer’s disease. Nat Neurosci 20:1236–1246. https://doi.org/10.1038/nn.4608

    Article  CAS  Google Scholar 

  7. Cavalcante GC, Schaan AP, Cabral GF, Santana-Da-Silva MN, Pinto P, Vidal AF et al (2019) A cell’s fate: an overview of the molecular biology and genetics of apoptosis. Int J Mol Sci 20:4133. https://doi.org/10.3390/ijms20174133

    Article  CAS  Google Scholar 

  8. Coppé JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol Mech Dis 5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144

    Article  CAS  Google Scholar 

  9. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I et al (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128:755–766. https://doi.org/10.1007/s00401-014-1349-0

    Article  CAS  Google Scholar 

  10. de Vasconcelos NM, Van Opdenbosch N, Van Gorp H, Parthoens E, Lamkanfi M (2019) Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture. Cell Death Differ 26:146–161. https://doi.org/10.1038/s41418-018-0106-7

    Article  CAS  Google Scholar 

  11. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47. https://doi.org/10.1093/cercor/1.1.1-a

    Article  Google Scholar 

  12. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal cell death. Physiol Rev 98:813–880. https://doi.org/10.1152/physrev.00011.2017

    Article  CAS  Google Scholar 

  13. Friker LL, Scheiblich H, Hochheiser IV, Brinkschulte R, Riedel D, Latz E et al (2020) β-amyloid clustering around ASC fibrils boosts its toxicity in microglia. Cell Rep 30:3743–3754. https://doi.org/10.1016/j.celrep.2020.02.025

    Article  CAS  Google Scholar 

  14. Fritsch M, Günther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP et al (2019) Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575:683–687. https://doi.org/10.1038/s41586-019-1770-6

    Article  CAS  Google Scholar 

  15. García-Cabezas M, John YJ, Barbas H, Zikopoulos B (2016) Distinction of neurons, glia and endothelial cells in the cerebral cortex: an algorithm based on cytological features. Front Neuroanat 10:107. https://doi.org/10.3389/fnana.2016.00107

    Article  CAS  Google Scholar 

  16. Gomes LA, Hipp SA, Rijal Upadhaya A, Balakrishnan K, Ospitalieri S, Koper MJ et al (2019) Aβ-induced acceleration of Alzheimer-related τ-pathology spreading and its association with prion protein. Acta Neuropathol 138:913–941. https://doi.org/10.1007/s00401-019-02053-5

    Article  CAS  Google Scholar 

  17. Götz J, Chen F, Van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 293:1491–1495. https://doi.org/10.1126/science.1062097

    Article  Google Scholar 

  18. Greenwood EK, Brown DR (2021) Senescent microglia: the key to the ageing brain? Int J Mol Sci 22:4402. https://doi.org/10.3390/ijms22094402

    Article  CAS  Google Scholar 

  19. Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimerʼs disease. J Neuropathol Exp Neurol 54:276–281. https://doi.org/10.1097/00005072-199503000-00014

    Article  CAS  Google Scholar 

  20. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol 9:857–865. https://doi.org/10.1038/ni.1636

    Article  CAS  Google Scholar 

  21. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A et al (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50:253-271.e6. https://doi.org/10.1016/j.immuni.2018.11.004

    Article  CAS  Google Scholar 

  22. Han C, Yang Y, Guan Q, Zhang X, Shen H, Sheng Y et al (2020) New mechanism of nerve injury in Alzheimer’s disease: β-amyloid-induced neuronal pyroptosis. J Cell Mol Med 24:8078–8090. https://doi.org/10.1111/jcmm.15439

    Article  CAS  Google Scholar 

  23. He W, Wan H, Hu L, Chen P, Wang X, Huang Z et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1 β secretion. Cell Res 25:1285–1298. https://doi.org/10.1038/cr.2015.139

    Article  CAS  Google Scholar 

  24. Hecht M, Krämer LM, von Arnim CAF, Otto M, Thal DR (2018) Capillary cerebral amyloid angiopathy in Alzheimer’s disease: association with allocortical/hippocampal microinfarcts and cognitive decline. Acta Neuropathol 135:681–694. https://doi.org/10.1007/s00401-018-1834-y

    Article  CAS  Google Scholar 

  25. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678. https://doi.org/10.1038/nature11729

    Article  CAS  Google Scholar 

  26. Heneka MT, McManus RM, Latz E (2018) Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 19:610–621. https://doi.org/10.1038/s41583-018-0055-7

    Article  CAS  Google Scholar 

  27. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y et al (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J Cell Biol 165:347–356. https://doi.org/10.1083/jcb.200310015

    Article  CAS  Google Scholar 

  28. Hong Y, Liu Y, Yu D, Wang M, Hou Y (2019) The neuroprotection of progesterone against Aβ-induced NLRP3-Caspase-1 inflammasome activation via enhancing autophagy in astrocytes. Int Immunopharmacol 74:105669. https://doi.org/10.1016/j.intimp.2019.05.054

    Article  CAS  Google Scholar 

  29. Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J et al (2020) FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol 21:736–745. https://doi.org/10.1038/s41590-020-0669-6

    Article  CAS  Google Scholar 

  30. Hu Y, Fryatt GL, Ghorbani M, Obst J, Menassa DA, Martin-Estebane M et al (2021) Replicative senescence dictates the emergence of disease-associated microglia and contributes to Aβ pathology. Cell Rep 35:109228. https://doi.org/10.1016/j.celrep.2021.109228

    Article  CAS  Google Scholar 

  31. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL (1982) A new clinical scale for the staging of dementia. Br J Psychiatry 140:566–572. https://doi.org/10.1192/bjp.140.6.566

    Article  CAS  Google Scholar 

  32. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2012) National institute on aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s Dement 8:1–13. https://doi.org/10.1016/j.jalz.2011.10.007

    Article  Google Scholar 

  33. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170. https://doi.org/10.1126/science.6474172

    Article  CAS  Google Scholar 

  34. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-saecker A et al (2019) NLRP3 inflammasome activation drives tau pathology. Nature 575:669–673. https://doi.org/10.1038/s41586-019-1769-z

    Article  CAS  Google Scholar 

  35. Kajiwara Y, McKenzie A, Dorr N, Gama Sosa MA, Elder G, Schmeidler J et al (2016) The human-specific CASP4 gene product contributes to Alzheimer-related synaptic and behavioural deficits. Hum Mol Genet 25:4315–4327. https://doi.org/10.1093/hmg/ddw265

    Article  CAS  Google Scholar 

  36. Kayagaki N, Warming S, Lamkanfi M, Vande WL, Louie S, Dong J et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121. https://doi.org/10.1038/nature10558

    Article  CAS  Google Scholar 

  37. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276-1290.e17. https://doi.org/10.1016/j.cell.2017.05.018

    Article  CAS  Google Scholar 

  38. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement Transl Res Clin Interv 4:575–590. https://doi.org/10.1016/j.trci.2018.06.014

    Article  Google Scholar 

  39. Köhler C, Dinekov M, Götz J (2014) Granulovacuolar degeneration and unfolded protein response in mouse models of tauopathy and Aβ amyloidosis. Neurobiol Dis 71:169–179. https://doi.org/10.1016/j.nbd.2014.07.006

    Article  CAS  Google Scholar 

  40. Koper MJ, Van Schoor E, Ospitalieri S, Vandenberghe R, Vandenbulcke M, von Arnim CAF et al (2020) Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer’s disease. Acta Neuropathol 139:463–484. https://doi.org/10.1007/s00401-019-02103-y

    Article  CAS  Google Scholar 

  41. Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157:1013–1022. https://doi.org/10.1016/j.cell.2014.04.007

    Article  CAS  Google Scholar 

  42. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411. https://doi.org/10.1038/nri3452

    Article  CAS  Google Scholar 

  43. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491. https://doi.org/10.1126/science.1058189

    Article  CAS  Google Scholar 

  44. Mancuso R, Fattorelli N, Martinez-Muriana A, Davis E, Wolfs L, Van Den Daele J et al (2022) A multi-pronged human microglia response to Alzheimer’s disease Aβ pathology. bioRxiv. https://doi.org/10.1101/2022.07.07.499139

  45. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Prim 1:15056. https://doi.org/10.1038/nrdp.2015.56

    Article  Google Scholar 

  46. McKenzie BA, Mamik MK, Saito LB, Boghozian R, Monaco MC, Major EO et al (2018) Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci U S A 115:E6065–E6074. https://doi.org/10.1073/pnas.1722041115

    Article  CAS  Google Scholar 

  47. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486. https://doi.org/10.1212/wnl.41.4.479

    Article  CAS  Google Scholar 

  48. Nishizaki T (2019) Fe3+ Facilitates endocytic internalization of extracellular Aβ1–42 and enhances Aβ1–42 -induced caspase-3/caspase-4 activation and neuronal cell death. Mol Neurobiol 56:4812–4819. https://doi.org/10.1007/s12035-018-1408-y

    Article  CAS  Google Scholar 

  49. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783. https://doi.org/10.1126/science.aag2590

    Article  CAS  Google Scholar 

  50. Rathkey JK, Zhao J, Liu Z, Chen Y, Yang J, Hannah C et al (2018) Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol 3:eaat2738. https://doi.org/10.1126/sciimmunol.aat2738.Chemical

    Article  Google Scholar 

  51. Ratner B (2009) The correlation coefficient: its values range between 1/1, or do they. J Target Meas Anal Mark 17:139–142. https://doi.org/10.1057/jt.2009.5

    Article  Google Scholar 

  52. Rijal Upadhaya A, Kosterin I, Kumar S, von Arnim CAF, Yamaguchi H, Fändrich M et al (2014) Biochemical stages of amyloid-β peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer’s disease. Brain 137:887–903. https://doi.org/10.1093/brain/awt362

    Article  Google Scholar 

  53. Rohn TT, Head E, Nesse WH, Cotman CW, Cribbs DH (2001) Activation of caspase-8 in the Alzheimer’s disease brain. Neurobiol Dis 8:1006–1016. https://doi.org/10.1006/nbdi.2001.0449

    Article  CAS  Google Scholar 

  54. Rolyan H, Scheffold A, Heinrich A, Begus-Nahrmann Y, Langkopf BH, Hölter SM et al (2011) Telomere shortening reduces Alzheimer’s disease amyloid pathology in mice. Brain 134:2044–2056. https://doi.org/10.1093/brain/awr133

    Article  Google Scholar 

  55. Rühl S, Shkarina K, Demarco B, Heilig R, Santos JC, Broz P (2018) ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362:956–960. https://doi.org/10.1126/science.aar7607

    Article  CAS  Google Scholar 

  56. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY et al (2018) Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A 115:E10888–E10897. https://doi.org/10.1073/pnas.1809548115

    Article  CAS  Google Scholar 

  57. Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H et al (2016) GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 35:1766–1778. https://doi.org/10.15252/embj.201694696

    Article  CAS  Google Scholar 

  58. Schaeverbeke JM, Gabel S, Meersmans K, Luckett ES, De Meyer S, Adamczuk K et al (2021) Baseline cognition is the best predictor of 4-year cognitive change in cognitively intact older adults. Alzheimer’s Res Ther 13:75. https://doi.org/10.1186/s13195-021-00798-4

    Article  CAS  Google Scholar 

  59. Serrano-Pozo A, Mielke ML, Gómez-Isla T, Betensky RA, Growdon JH, Frosch MP et al (2011) Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. AJPA 179:1373–1384. https://doi.org/10.1016/j.ajpath.2011.05.047

    Article  Google Scholar 

  60. Shen H, Han C, Yang Y, Guo L, Sheng Y, Wang J et al (2021) Pyroptosis executive protein GSDMD as a biomarker for diagnosis and identification of Alzheimer’s disease. Brain Behav 11:e02063. https://doi.org/10.1002/brb3.2063

    Article  CAS  Google Scholar 

  61. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245–254. https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  Google Scholar 

  62. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. https://doi.org/10.1038/nature15514

    Article  CAS  Google Scholar 

  63. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P et al (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:187–192. https://doi.org/10.1038/nature13683

    Article  CAS  Google Scholar 

  64. Sierksma A, Lu A, Mancuso R, Fattorelli N, Thrupp N, Salta E et al (2020) Novel Alzheimer risk genes determine the microglia response to amyloid-β but not to TAU pathology. EMBO Mol Med 12:e10606. https://doi.org/10.15252/emmm.201910606

    Article  CAS  Google Scholar 

  65. Song L, Pei L, Yao S, Wu Y, Shang Y (2017) NLRP3 inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci 11:63. https://doi.org/10.3389/fncel.2017.00063

    Article  CAS  Google Scholar 

  66. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 7:280–292. https://doi.org/10.1016/j.jalz.2011.03.003

    Article  Google Scholar 

  67. Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Brück W, Jellinger K et al (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease: Evidence for apoptotic cell death. Am J Pathol 155:1459–1466. https://doi.org/10.1016/S0002-9440(10)65460-0

    Article  CAS  Google Scholar 

  68. Stancu IC, Cremers N, Vanrusselt H, Couturier J, Vanoosthuyse A, Kessels S et al (2019) Aggregated Tau activates NLRP3–ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathol 137:599–617. https://doi.org/10.1007/s00401-018-01957-y

    Article  CAS  Google Scholar 

  69. Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33:256–266. https://doi.org/10.1002/1098-1136(200103)33:3%3c256::AID-GLIA1024%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  70. Su JH, Zhao M, Anderson AJ, Srinivasan A, Cotman CW (2001) Activated caspase-3 expression in Alzheimer’s and aged control brain: Correlation with Alzheimer pathology. Brain Res 898:350–357. https://doi.org/10.1016/S0006-8993(01)02018-2

    Article  CAS  Google Scholar 

  71. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53:1181–1194. https://doi.org/10.1007/s12035-014-9070-5

  72. Thal DR, Del Tredici K, Ludolph AC, Hoozemans JJM, Rozemuller AJ, Braak H et al (2011) Stages of granulovacuolar degeneration: their relation to Alzheimer’s disease and chronic stress response. Acta Neuropathol 122:577–589. https://doi.org/10.1007/s00401-011-0871-6

    Article  CAS  Google Scholar 

  73. Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800. https://doi.org/10.1212/WNL.58.12.1791

    Article  Google Scholar 

  74. Thal DR, Rüb U, Schultz C, Sassin I, Ghebremedhin E, Del Tredici K et al (2000) Sequence of Aβ-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59:733–748. https://doi.org/10.1093/jnen/59.8.733

    Article  CAS  Google Scholar 

  75. Uedufy (2022) How To Run Mediation Analysis in SPSS [2 Methods]. https://uedufy.com/how-to-run-mediation-analysis-in-spss/. Accessed 18 Jul 2022

  76. Van Schoor E, Ospitalieri S, Moonen S, Tomé SO, Ronisz A, Ok O et al (2022) Increased pyroptosis activation in white matter microglia is associated with neuronal loss in ALS motor cortex. Acta Neuropathol 144:393–411. https://doi.org/10.1007/s00401-022-02466-9

    Article  CAS  Google Scholar 

  77. Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D et al (2017) Microglia-derived ASC specks cross seed amyloid-β in Alzheimer’s disease. Nature 552:355–361. https://doi.org/10.1038/nature25158

    Article  CAS  Google Scholar 

  78. West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer ’ s disease. Lancet 344:769–772. https://doi.org/10.1016/s0140-6736(94)92338-8

    Article  CAS  Google Scholar 

  79. Wiersma VI, Ziel Van AM, Vazquez S, Anna S, Ernesto N, Correa B et al (2019) Granulovacuolar degeneration bodies are neuron-selective lysosomal structures induced by intracellular tau pathology. Acta Neuropathol 138:943–970. https://doi.org/10.1007/s00401-019-02046-4

    Article  CAS  Google Scholar 

  80. World Health Organization (2017) Global action plan on the public health response to dementia 2017–2025. World Health Organization, Geneva, Switzerland. https://apps.who.int/iris/handle/10665/259615

  81. Zahid A, Ismail H, Jin T (2021) Molecular and structural aspects of gasdermin family pores and insights into gasdermin-elicited programmed cell death. Biochem Soc Trans 49:2697–2710. https://doi.org/10.1042/BST20210672

    Article  CAS  Google Scholar 

  82. Zarow C, Vinters HV, Ellis WG, Weiner MW, Mungas D, White L et al (2005) Correlates of hippocampal neuron number in Alzheimer’s disease and ischemic vascular dementia. Ann Neurol 57:896–903. https://doi.org/10.1002/ana.20503

    Article  Google Scholar 

  83. Zendedel A, Johann S, Mehrabi S, Joghataei MT, Hassanzadeh G, Kipp M et al (2016) Activation and Regulation of NLRP3 Inflammasome by Intrathecal Application of SDF-1a in a Spinal Cord Injury Model. Mol Neurobiol 53:3063–3075. https://doi.org/10.1007/s12035-015-9203-5

    Article  CAS  Google Scholar 

  84. Zhang X, Wang R, Hu D, Sun X, Fujioka H, Lundberg K et al (2020) Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer’s disease. Sci Adv 6:eabb8680. https://doi.org/10.1126/sciadv.abb8680

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by funding from FWO-Vlaanderen (G0F8516N and G065721N, DRT). SM received a Doctoral mandate from KU Leuven internal funds (DB/20/007/BM). An SB PhD Fellowship from FWO-Vlaanderen was given to EVS (1S46219N). JMS is a junior postdoctoral fellow of the Fonds Wetenschappelijk Onderzoek (FWO/Belgium) (12Y1620N) and received funding from Stichting Alzheimer association (#SAO-FRA 2021/00022). We gratefully acknowledge the support of Ms. Simona Ospitalieri and Mrs. Alicja Ronisz, and the VIB Bio Imaging Core for their support & assistance in this study.

Author information

Authors and Affiliations

Authors

Contributions

SM: study design, neuropathology, immunohistochemistry, microscopic assessments, statistical analysis, manuscript drafting and preparation. MK: study design, immunohistochemistry, microscopic assessments, critical review of the manuscript. EVS: immunohistochemistry, critical review of the manuscript. JMS: statistical analysis, critical review of the manuscript. RV, CAFvA: clinical neurology, recruitment, critical review of the manuscript. TT: neuropathology and critical review of the manuscript. BDS: study design, critical review of the manuscript. DRT: study design and coordination, neuropathology, microscopic assessments, supplementary statistical analysis, and manuscript preparation. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sebastiaan Moonen or Dietmar Rudolf Thal.

Ethics declarations

Conflict of interest

DRT is a member of the Acta Neuropathologica Editorial Board. He was not involved in the assessment or decision-making process for this manuscript. DRT received speaker honorary or travel reimbursement from UCB (Brussels, Belgium) and Biogen (USA), and collaborated with Novartis Pharma AG (Basel, Switzerland), Probiodrug (Halle (Saale), Germany), GE Healthcare (Amersham, UK), and Janssen Pharmaceutical Companies (Beerse, Belgium). RV’s institution has a clinical trial agreement (RV as PI) with Alector, Biogen, J&J, NovoNordisk, Prevail, Roche and UCB. RV’s institution has a consultancy agreement for participation in Data Safety Monitoring Board (RV as provider) with AC Immune and Novartis. RV’s institution has a material transfer agreement (RV as PI) with ADx Neurosciences. CAFvA received honoraria from serving on the scientific advisory board of Biogen, Roche, Novo Nordisk, and Dr. Willmar Schwabe GmbH &Co. KG and has received funding for travel and speaker honoraria from Biogen, Roche diagnostics AG, Medical Tribune Verlagsgesellschaft mbH, and Dr. Willmar Schwabe GmbH &Co. KG and has received research support from Roche diagnostics AG. Bart De Strooper is occasionally consulting for different companies. He is founding scientist of Augustin TX and of Muna TX. He is also shareholder of Muna TX. Funders were not involved in the design of this study, in the collection, analysis or interpretation of data, in the decision to publish the results, or in the preparation of the manuscript.

Ethical approval

Human post-mortem brain tissue was collected in accordance with the applicable laws in Belgium (UZ Leuven) and Germany (Ulm). The recruitment protocols for the collection of human brains were approved by the ethical committees of the UZ Leuven (Belgium; S-59292, S-52791) and the University of Ulm (Germany; 54/08). This study was approved by the UZ Leuven ethical committee (Leuven, Belgium; S-64378).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 286 KB)

Supplementary file2 (PDF 2474 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moonen, S., Koper, M.J., Van Schoor, E. et al. Pyroptosis in Alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons. Acta Neuropathol 145, 175–195 (2023). https://doi.org/10.1007/s00401-022-02528-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-022-02528-y

Keywords

Navigation