Skip to main content
Log in

A role of visible light–mediated surface grafting on nano-SiO2 in Pickering emulsions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The fast development of Pickering emulsion systems inspires burgeoning demand on the universal synthesis platform for the surface modification of solid particle emulsifiers. In this work, a mild and convenient “visible light–mediated surface grafting through (VSGT)” strategy is proposed. Through the two-step strategy, silica nanoparticles (SNPs) were firstly modified by vinyl alkoxysilane and then used as the substrate for grafting homopolymer brushes via reversible addition-fragmentation chain transfer polymerization under the irradiation of a compact fluorescent lamp (CFL) light source. The whole process was proceeded at room temperature without tedious conditions and complex operations. Importantly, simply by changing the monomer types, hydrophilic acrylic polymer chains can all be grafted on SNP with controlled chain length and relatively uniform high surface densities including poly(acrylic acid) (PAA), poly(N,N-dimethylacrylamide) (PDMA), poly(N-isopropylacrylamide) (PNIPAM), and poly(diacetone acrylamide) (PDAAM). Through the synthesis platform, the interfacial performance of the surface-grafted nanoparticles exhibited as amendable working as Pickering emulsifiers in oil–water system, illustrated by the evolution of interfacial tensions and the inner structures of the corresponding Pickering emulsions. Moreover, the emulsion stabilized by SNP-g-PAA and SNP-g-PNIPAM showed pH and temperature triggered emulsification-demulsification behaviors, respectively, convincing the contribution of the surface grafted polymers and provide a feasible clue for the subtle design on the interfacial texture in advanced Pickering emulsions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nypelö T, Rodriguez-Abreu C, Kolen’Ko Y, Rivas J, Rojas O.J (2014) Microbeads and hollow microcapsules obtained by self-assembly of Pickering magneto-responsive cellulose nanocrystals. ACS Appl. Mater. Interfaces 6(19):16851−16858.

  2. Zou H, Zhai S (2020) Synthetic strategies for raspberry-like polymer composite particles. Polym Chem 11(20):3370–3392

    Article  CAS  Google Scholar 

  3. Marschelke C, Diring O, Synytska A (2019) Reconfigurable assembly of charged polymer-modified Janus and non-Janus particles: from half-raspberries to colloidal clusters and chains. Nanoscale Adv 1(9):3715–3726

    Article  CAS  Google Scholar 

  4. Haaj SB, Thielemans W, Magnin A, Boufi S (2014) Starch nanocrystal stabilized Pickering emulsion polymerization for nanocomposites with improved performance. ACS Appl Mater Interfaces 6(11):8263–8273

    Article  CAS  Google Scholar 

  5. Tang J, Quinlan PJ, Tam KC (2015) Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter 11(18):3512–3529

    Article  CAS  Google Scholar 

  6. Mable CJ, Warren NJ, Thompson KL, Mykhaylyk OO, Armes SP (2015) Framboidal ABC triblock copolymer vesicles: a new class of efficient Pickering emulsifier. Chem Sci 6(11):6179–6188

    Article  CAS  Google Scholar 

  7. Tran L, Haase MF (2019) Templating interfacial nanoparticle assemblies via in situ techniques. Langmuir 35(26):8584–8602

    Article  CAS  Google Scholar 

  8. Wang X, Zeng M, Yu YH, Wang H, Mannan MS, Cheng Z (2017) Thermosensitive ZrP-PNIPAM pickering emulsifier and the controlled-release behavior. ACS Appl Mater Interfaces 9(8):7852–7858

    Article  CAS  Google Scholar 

  9. Pei X, Zhai K, Wang C, Deng Y, Tan Y, Zhang B, Bai Y, Xu K, Wang P (2019) Polymer brush graft-modified starch-based nanoparticles as pickering emulsifiers. Langmuir 35(22):7222–7230

    Article  CAS  Google Scholar 

  10. Williams M, Warren NJ, Fielding LA, Armes SP, Verstraete P, Smets J (2014) Preparation of double emulsions using hybrid polymer/silica particles: new Pickering emulsifiers with adjustable surface wettability. ACS Appl Mater Interfaces 6(23):20919–20927

    Article  CAS  Google Scholar 

  11. Gupta C, Washburn NR (2014) Polymer-grafted lignin surfactants prepared via reversible addition-fragmentation chain-transfer polymerization. Langmuir 30(31):9303–9312

    Article  CAS  Google Scholar 

  12. Durand N, Gaveau P, Silly G, Améduri B, Boutevin B (2011) Radical grafting of tetrafluoroethylene and vinylidene fluoride telomers onto silica bearing vinyl groups. Macromolecules 44(16):6249–6257

    Article  CAS  Google Scholar 

  13. Zhang C, Luo N, Hirt DE (2006) Surface grafting polyethylene glycol (PEG) onto poly(ethylene-co-acrylic acid) films. Langmuir 22(16):6851–6857

    Article  CAS  Google Scholar 

  14. Hall-Edgefield DL, Shi T, Nguyen K, Sidorenko A (2014) Hybrid molecular brushes with chitosan backbone: facile synthesis and surface grafting. ACS Appl Mater Interfaces 6(24):22026–22033

    Article  CAS  Google Scholar 

  15. Chen WL, Cordero R, Tran H, Ober CK (2017) 50th Anniversary perspective: Polymer brushes: novel surfaces for future materials. Macromolecules 50(11):4089–4113

    Article  CAS  Google Scholar 

  16. Xiong X, Liu W, Luan Y, Du J, Wu Z, Chen H (2014) A versatile, fast, and efficient method of visible-light-induced surface grafting polymerization. Langmuir 30(19):5474–5480

    Article  CAS  Google Scholar 

  17. Chen M, Zhong M, Johnson JA (2016) Light-controlled radical polymerization: mechanisms, methods, and applications. Chem Rev 116(17):10167–10211

    Article  CAS  Google Scholar 

  18. Pan X, Tasdelen MA, Laun J, Junkers T, Matyjaszewski YY, K., (2016) Photomediated controlled radical polymerization. Prog Polym Sci 62:73–125

    Article  CAS  Google Scholar 

  19. Phommalysack-Lovan J, Chu Y, Boyer C, Xu J (2018) PET-RAFT polymerisation: towards green and precision polymer manufacturing. Chem Commun 54(50):6591–6606

    Article  CAS  Google Scholar 

  20. Ng G, Li M, Yeow J, Jung K, Boyer C (2020) Benchtop Preparation of Polymer Brushes by SI-PET-RAFT: The Effect of the Polymer Composition and Structure on Inhibition of a Pseudomonas Biofilm. ACS Appl Mater Interfaces 12(49):55243-55254

  21. Barbey R, Lavanant L, Paripovic D, Schüwer N, Klok HA (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527

    Article  CAS  Google Scholar 

  22. Hui CM, Pietrasik J, Schmitt M, Mahoney C, Choi J, Bockstaller MR, Matyjaszewski K (2014) Surface-initiated polymerization as an enabling tool for multifunctional (nano-)engineered hybrid materials. Chem Mater 26(1):745–762

    Article  CAS  Google Scholar 

  23. Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA (2017) Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem Rev 117(3):1105–1318

    Article  CAS  Google Scholar 

  24. Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25(5):677–710

    Article  CAS  Google Scholar 

  25. Shi Y, Gao H, Lu L, Cai Y (2009) Ultra-fast RAFT polymerisation of poly(ethylene glycol) acrylate in aqueous media under mild visible light radiation at 25 ℃. Chem Commun 11:1368–1370

    Article  CAS  Google Scholar 

  26. Shi Y, Liu G, Gao H, Lu L, Cai Y (2009) Effect of mild visible light on rapid aqueous RAFT polymerization of water-soluble acrylic monomers at ambient temperature: initiation and activation. Macromolecules 42(12):3917–3926

    Article  CAS  Google Scholar 

  27. Tang X, Han J, Zhu Z, Lu X, Chen H, Cai Y (2014) Facile synthesis, sequence-tuned thermoresponsive behaviours and reaction-induced reorganization of water-soluble keto-polymers. Polym Chem 5(13):4115–4123

    Article  CAS  Google Scholar 

  28. Werner A, Schmitt V, Sebe G, Heroguez V (2019) Convenient synthesis of hybrid polymer materials by AGET-ATRP polymerization of pickering emulsions stabilized by cellulose nanocrystals grafted with reactive moieties. Biomacromol 20(1):490–501

    Article  CAS  Google Scholar 

  29. Hou Y, Jiang J, Li K, Zhang Y, Liu J (2014) Grafting amphiphilic brushes onto halloysite nanotubes via a living RAFT polymerization and their Pickering emulsification behavior. J Phys Chem B 118(7):1962–1967

    Article  CAS  Google Scholar 

  30. Saigal T, Dong H, Matyjaszewski K, Tilton RD (2010) Pickering emulsions stabilized by nanoparticles with thermally responsive grafted polymer brushes. Langmuir 26(19):15200–15209

    Article  CAS  Google Scholar 

  31. Dai L, Li Y, Kong F, Liu K, Si C, Ni Y (2019) Lignin-based nanoparticles stabilized Pickering emulsion for stability improvement and thermal-controlled release of trans-Resveratrol. ACS Sustainable Chem Eng 7(15):13497–13504

    Article  CAS  Google Scholar 

  32. Ali B, Zahra S, Ad Nan N, Cyrille B, May L (2018) Surface functionalization of upconversion nanoparticles using visible light-mediated polymerization. Polymer 151:6–14

    Article  CAS  Google Scholar 

  33. Bagheri A, Arandiyan H, Adnan N, Boyer C, Lim M (2017) Controlled direct growth of polymer shell on upconversion nanoparticle surface via visible light regulated polymerization. Macromolecules 50(18):7137–7147

    Article  CAS  Google Scholar 

  34. Li M, Fromel M, Ranaweera D, Rocha S, Boyer C, Pester CW (2019) SI-PET-RAFT: surface-initiated photoinduced electron transfer-reversible addition–fragmentation chain transfer polymerization. ACS Macro Lett 8:374–380

    Article  CAS  Google Scholar 

  35. Li CZ, Benicewicz BC (2005) Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. Macromolecules 38(14):5929–5936

    Article  CAS  Google Scholar 

  36. Baum M, Brittain WJ (2002) Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique. Macromolecules 35(3):610–615

    Article  CAS  Google Scholar 

  37. Li C, Han J, Chang YR, Benicewicz BC (2006) A versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles. Macromolecules 39:3175–3183

    Article  CAS  Google Scholar 

  38. Xu S, Li J, Chen L (2011) Molecularly imprinted core-shell nanoparticles for determination of trace atrazine by reversible addition-fragmentation chain transfer surface imprinting. J Mater Chem 21(12):4346–4351

    Article  CAS  Google Scholar 

  39. Han C, Cui Q, Meng P, Waclawik ER, Yang H, Xu J (2018) Direct observation of carbon nitride-stabilized Pickering emulsions. Langmuir 34(34):10135–10143

    Article  CAS  Google Scholar 

  40. Shi H, Qiu T, Ou-Yang HD, Xu H, Lu Q, Zheng Y, Liu K, He L, Guo L, Li X (2019) ABA-type triblock copolymer micellar system with lower critical solution temperature-type sol-gel transition. J Colloid Interface Sci 545:220–230

    Article  CAS  Google Scholar 

  41. Afroze F, Nies E, Berghmans H (2000) Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks. J Mol Struct 554(1):55–68

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2020YFE0100300) and Fundamental Research Funds for the Central Universities at Beijing University of Chemical Technology (Grant No. JD2109).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Teng Qiu or Longhai Guo.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6170 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Qiu, T., Xu, H. et al. A role of visible light–mediated surface grafting on nano-SiO2 in Pickering emulsions. Colloid Polym Sci 299, 1819–1831 (2021). https://doi.org/10.1007/s00396-021-04880-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04880-z

Keywords

Navigation