Skip to main content

Advertisement

Log in

Single-cell RNA sequencing to identify cellular heterogeneity and targets in cardiovascular diseases: from bench to bedside

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The mechanisms of cardiovascular diseases (CVDs) remain incompletely elucidated. Single-cell RNA sequencing (scRNA-seq) has enabled the profiling of single-cell transcriptomes at unprecedented resolution and throughput, which is critical for deciphering cardiovascular cellular heterogeneity and underlying disease mechanisms, thereby facilitating the development of therapeutic strategies. In this review, we summarize cellular heterogeneity in cardiovascular homeostasis and diseases as well as the discovery of potential disease targets based on scRNA-seq, and yield new insights into the promise of scRNA-seq technology in precision medicine and clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK, Chen Y, Villalta JE, Gilbert LA, Horlbeck MA, Hein MY, Pak RA, Gray AN, Gross CA, Dixit A, Parnas O, Regev A, Weissman JS (2016) A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167:1867-1882.e1821. https://doi.org/10.1016/j.cell.2016.11.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aghajanian H, Kimura T, Rurik JG, Hancock AS, Leibowitz MS, Li L, Scholler J, Monslow J, Lo A, Han W, Wang T, Bedi K, Morley MP, Linares Saldana RA, Bolar NA, McDaid K, Assenmacher CA, Smith CL, Wirth D, June CH, Margulies KB, Jain R, Puré E, Albelda SM, Epstein JA (2019) Targeting cardiac fibrosis with engineered T cells. Nature 573:430–433. https://doi.org/10.1038/s41586-019-1546-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine JC, Geurts P, Aerts J, van den Oord J, Atak ZK, Wouters J, Aerts S (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14:1083–1086. https://doi.org/10.1038/nmeth.4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173. https://doi.org/10.1161/01.RES.0000255691.76142.4a

    Article  CAS  PubMed  Google Scholar 

  5. Alencar GF, Owsiany KM, Karnewar S, Sukhavasi K, Mocci G, Nguyen AT, Williams CM, Shamsuzzaman S, Mokry M, Henderson CA, Haskins R, Baylis RA, Finn AV, McNamara CA, Zunder ER, Venkata V, Pasterkamp G, Björkegren J, Bekiranov S, Owens GK (2020) Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis. Circulation 142:2045–2059. https://doi.org/10.1161/circulationaha.120.046672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alexander Y, Osto E, Schmidt-Trucksäss A, Shechter M, Trifunovic D, Duncker DJ, Aboyans V, Bäck M, Badimon L, Cosentino F, De Carlo M, Dorobantu M, Harrison DG, Guzik TJ, Hoefer I, Morris PD, Norata GD, Suades R, Taddei S, Vilahur G, Waltenberger J, Weber C, Wilkinson F, Bochaton-Piallat ML, Evans PC (2021) Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc Res 117:29–42. https://doi.org/10.1093/cvr/cvaa085

    Article  CAS  PubMed  Google Scholar 

  7. Alexanian M, Przytycki PF, Micheletti R, Padmanabhan A, Ye L, Travers JG, Gonzalez-Teran B, Silva AC, Duan Q, Ranade SS, Felix F, Linares-Saldana R, Li L, Lee CY, Sadagopan N, Pelonero A, Huang Y, Andreoletti G, Jain R, McKinsey TA, Rosenfeld MG, Gifford CA, Pollard KS, Haldar SM, Srivastava D (2021) A transcriptional switch governs fibroblast activation in heart disease. Nature 595:438–443. https://doi.org/10.1038/s41586-021-03674-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA (2014) Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 129:1551–1559. https://doi.org/10.1161/circulationaha.113.005015

    Article  CAS  PubMed  Google Scholar 

  9. Andrews TS, Kiselev VY, McCarthy D, Hemberg M (2021) Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat Protoc 16:1–9. https://doi.org/10.1038/s41596-020-00409-w

    Article  CAS  PubMed  Google Scholar 

  10. Andueza A, Kumar S, Kim J, Kang DW, Mumme HL, Perez JI, Villa-Roel N, Jo H (2020) Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep 33:108491. https://doi.org/10.1016/j.celrep.2020.108491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215. https://doi.org/10.1016/j.devcel.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  12. Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M, Nahrendorf M, Epelman S, Kreisel D, Liu Y, Itoh A, Shankar TS, Selzman CH, Drakos SG, Lavine KJ (2018) The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med 24:1234–1245. https://doi.org/10.1038/s41591-018-0059-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Balzer MS, Ma Z, Zhou J, Abedini A, Susztak K (2021) How to get started with single cell RNA sequencing data analysis. J Am Soc Nephrol 32:1279–1292. https://doi.org/10.1681/asn.2020121742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bendall SC, Simonds EF, Qiu P, el Amir AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe’er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696. https://doi.org/10.1126/science.1198704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, Dos Remedios C, Malm T, Andrä M, Jashari R, Nyengaard JR, Possnert G, Jovinge S, Druid H, Frisén J (2015) Dynamics of cell generation and turnover in the human heart. Cell 161:1566–1575. https://doi.org/10.1016/j.cell.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  16. Boogerd CJ, Lacraz GPA, Vértesy Á, van Kampen SJ, Perini I, de Ruiter H, Versteeg D, Brodehl A, van der Kraak P, Giacca M, de Jonge N, Junker JP, van Oudenaarden A, Vink A, van Rooij E (2022) Spatial transcriptomics unveils ZBTB11 as a regulator of cardiomyocyte degeneration in arrhythmogenic cardiomyopathy. Cardiovasc Res. https://doi.org/10.1093/cvr/cvac072

    Article  PubMed Central  Google Scholar 

  17. Bu DX, Tarrio M, Maganto-Garcia E, Stavrakis G, Tajima G, Lederer J, Jarolim P, Freeman GJ, Sharpe AH, Lichtman AH (2011) Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler Thromb Vasc Biol 31:1100–1107. https://doi.org/10.1161/atvbaha.111.224709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835. https://doi.org/10.1038/nrg1710

    Article  CAS  PubMed  Google Scholar 

  19. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486–490. https://doi.org/10.1038/nature14590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Caforio ALP, Re F, Avella A, Marcolongo R, Baratta P, Seguso M, Gallo N, Plebani M, Izquierdo-Bajo A, Cheng CY, Syrris P, Elliott PM, d’Amati G, Thiene G, Basso C, Gregori D, Iliceto S, Zachara E (2020) Evidence from family studies for autoimmunity in arrhythmogenic right ventricular cardiomyopathy: associations of circulating anti-heart and anti-intercalated disk autoantibodies with disease severity and family history. Circulation 141:1238–1248. https://doi.org/10.1161/circulationaha.119.043931

    Article  PubMed  Google Scholar 

  21. Calcagno DM, Ng RP Jr, Toomu A, Zhang C, Huang K, Aguirre AD, Weissleder R, Daniels LB, Fu Z, King KR (2020) The myeloid type I interferon response to myocardial infarction begins in bone marrow and is regulated by Nrf2-activated macrophages. Sci Immunol. https://doi.org/10.1126/sciimmunol.aaz1974

    Article  PubMed  PubMed Central  Google Scholar 

  22. Campbell KR, Steif A, Laks E, Zahn H, Lai D, McPherson A, Farahani H, Kabeer F, O’Flanagan C, Biele J, Brimhall J, Wang B, Walters P, Bouchard-Côté A, Aparicio S, Shah SP (2019) clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers. Genome Biol 20:54. https://doi.org/10.1186/s13059-019-1645-z

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cao J, O’Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, Zager MA, Aldinger KA, Blecher-Gonen R, Zhang F, Spielmann M, Palis J, Doherty D, Steemers FJ, Glass IA, Trapnell C, Shendure J (2020) A human cell atlas of fetal gene expression. Science. https://doi.org/10.1126/science.aba7721

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cao Y, Su B, Guo X, Sun W, Deng Y, Bao L, Zhu Q, Zhang X, Zheng Y, Geng C, Chai X, He R, Li X, Lv Q, Zhu H, Deng W, Xu Y, Wang Y, Qiao L, Tan Y, Song L, Wang G, Du X, Gao N, Liu J, Xiao J, Su XD, Du Z, Feng Y, Qin C, Qin C, Jin R, Xie XS (2020) Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell 182:73-84.e16. https://doi.org/10.1016/j.cell.2020.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chaffin M, Papangeli I, Simonson B, Akkad AD, Hill MC, Arduini A, Fleming SJ, Melanson M, Hayat S, Kost-Alimova M, Atwa O, Ye J, Bedi KC Jr, Nahrendorf M, Kaushik VK, Stegmann CM, Margulies KB, Tucker NR, Ellinor PT (2022) Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 608:174–180. https://doi.org/10.1038/s41586-022-04817-8

    Article  CAS  PubMed  Google Scholar 

  26. Chang Y, Li X, Cheng Q, Hu Y, Chen X, Hua X, Fan X, Tao M, Song J, Hu S (2021) Single-cell transcriptomic identified HIF1A as a target for attenuating acute rejection after heart transplantation. Basic Res Cardiol 116:64. https://doi.org/10.1007/s00395-021-00904-5

    Article  CAS  PubMed  Google Scholar 

  27. Chatterjee D, Fatah M, Akdis D, Spears DA, Koopmann TT, Mittal K, Rafiq MA, Cattanach BM, Zhao Q, Healey JS, Ackerman MJ, Bos JM, Sun Y, Maynes JT, Brunckhorst C, Medeiros-Domingo A, Duru F, Saguner AM, Hamilton RM (2018) An autoantibody identifies arrhythmogenic right ventricular cardiomyopathy and participates in its pathogenesis. Eur Heart J 39:3932–3944. https://doi.org/10.1093/eurheartj/ehy567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen L, Li X, Chen M, Feng Y, Xiong C (2020) The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res 116:1097–1100. https://doi.org/10.1093/cvr/cvaa078

    Article  CAS  PubMed  Google Scholar 

  29. Chen PY, Qin L, Li G, Malagon-Lopez J, Wang Z, Bergaya S, Gujja S, Caulk AW, Murtada SI, Zhang X, Zhuang ZW, Rao DA, Wang G, Tobiasova Z, Jiang B, Montgomery RR, Sun L, Sun H, Fisher EA, Gulcher JR, Fernandez-Hernando C, Humphrey JD, Tellides G, Chittenden TW, Simons M (2020) Smooth muscle cell reprogramming in aortic aneurysms. Cell Stem Cell 26:542-557.e511. https://doi.org/10.1016/j.stem.2020.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, Corada M, Dejana E, Zhou B, Adams RH (2016) Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun 7:12422. https://doi.org/10.1038/ncomms12422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheng P, Wirka RC, Shoa Clarke L, Zhao Q, Kundu R, Nguyen T, Nair S, Sharma D, Kim HJ, Shi H, Assimes T, Brian Kim J, Kundaje A, Quertermous T (2022) ZEB2 shapes the epigenetic landscape of atherosclerosis. Circulation 145:469–485. https://doi.org/10.1161/CIRCULATIONAHA.121.057789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheung TK, Lee CY, Bayer FP, McCoy A, Kuster B, Rose CM (2021) Defining the carrier proteome limit for single-cell proteomics. Nat Methods 18:76–83. https://doi.org/10.1038/s41592-020-01002-5

    Article  CAS  PubMed  Google Scholar 

  33. Chovanec P, Bolland DJ, Matheson LS, Wood AL, Krueger F, Andrews S, Corcoran AE (2018) Unbiased quantification of immunoglobulin diversity at the DNA level with VDJ-seq. Nat Protoc 13:1232–1252. https://doi.org/10.1038/nprot.2018.021

    Article  CAS  PubMed  Google Scholar 

  34. Chu T, Wang Z, Pe’er D, Danko CG (2022) Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology. Nat cancer 3:505–517. https://doi.org/10.1038/s43018-022-00356-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G (2017) Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc 12:534–547. https://doi.org/10.1038/nprot.2016.187

    Article  CAS  PubMed  Google Scholar 

  36. Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J, Schuster LC, Kuchler A, Alpar D, Bock C (2017) Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods 14:297–301. https://doi.org/10.1038/nmeth.4177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dawson A, Wang Y, Li Y, LeMaire SA, Shen YH (2021) New technologies with increased precision improve understanding of endothelial cell heterogeneity in cardiovascular health and disease. Front Cell Dev Biol 9:679995. https://doi.org/10.3389/fcell.2021.679995

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deng Q, Han G, Puebla-Osorio N, Ma MCJ, Strati P, Chasen B, Dai E, Dang M, Jain N, Yang H, Wang Y, Zhang S, Wang R, Chen R, Showell J, Ghosh S, Patchva S, Zhang Q, Sun R, Hagemeister F, Fayad L, Samaniego F, Lee HC, Nastoupil LJ, Fowler N, Eric Davis R, Westin J, Neelapu SS, Wang L, Green MR (2020) Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med 26:1878–1887. https://doi.org/10.1038/s41591-020-1061-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Denisenko E, Guo BB, Jones M, Hou R, de Kock L, Lassmann T, Poppe D, Clément O, Simmons RK, Lister R, Forrest ARR (2020) Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol 21:130. https://doi.org/10.1186/s13059-020-02048-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dhodapkar KM, Cohen AD, Kaushal A, Garfall AL, Manalo RJ, Carr AR, McCachren SS, Stadtmauer EA, Lacey SF, Melenhorst JJ, June CH, Milone MC, Dhodapkar MV (2022) Changes in bone marrow tumor and immune cells correlate with durability of remissions following BCMA CAR T therapy in myeloma. Blood Cancer Discov 3:490–501. https://doi.org/10.1158/2643-3230.Bcd-22-0018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dick SA, Macklin JA, Nejat S, Momen A, Clemente-Casares X, Althagafi MG, Chen J, Kantores C, Hosseinzadeh S, Aronoff L, Wong A, Zaman R, Barbu I, Besla R, Lavine KJ, Razani B, Ginhoux F, Husain M, Cybulsky MI, Robbins CS, Epelman S (2019) Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat Immunol 20:29–39. https://doi.org/10.1038/s41590-018-0272-2

    Article  CAS  PubMed  Google Scholar 

  42. Dick SA, Wong A, Hamidzada H, Nejat S, Nechanitzky R, Vohra S, Mueller B, Zaman R, Kantores C, Aronoff L, Momen A, Nechanitzky D, Li WY, Ramachandran P, Crome SQ, Becher B, Cybulsky MI, Billia F, Keshavjee S, Mital S, Robbins CS, Mak TW, Epelman S (2022) Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci Immunol. https://doi.org/10.1126/sciimmunol.abf7777

    Article  PubMed  Google Scholar 

  43. Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, Hughes TK, Wadsworth MH, Burks T, Nguyen LT, Kwon JYH, Barak B, Ge W, Kedaigle AJ, Carroll S, Li S, Hacohen N, Rozenblatt-Rosen O, Shalek AK, Villani AC, Regev A, Levin JZ (2020) Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol 38:737–746. https://doi.org/10.1038/s41587-020-0465-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dittrich GM, Froese N, Wang X, Kroeger H, Wang H, Szaroszyk M, Malek-Mohammadi M, Cordero J, Keles M, Korf-Klingebiel M, Wollert KC, Geffers R, Mayr M, Conway SJ, Dobreva G, Bauersachs J, Heineke J (2021) Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis. Basic Res Cardiol 116:26. https://doi.org/10.1007/s00395-021-00862-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, Marjanovic ND, Dionne D, Burks T, Raychowdhury R, Adamson B, Norman TM, Lander ES, Weissman JS, Friedman N, Regev A (2016) Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:1853-1866.e1817. https://doi.org/10.1016/j.cell.2016.11.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM (2018) Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res 114:590–600. https://doi.org/10.1093/cvr/cvy010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R (2020) Cell PhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc 15:1484–1506. https://doi.org/10.1038/s41596-020-0292-x

    Article  CAS  PubMed  Google Scholar 

  48. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama WM, Unanue ER, Colonna M, Randolph GJ, Mann DL (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104. https://doi.org/10.1016/j.immuni.2013.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Epelman S, Liu PP, Mann DL (2015) Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol 15:117–129. https://doi.org/10.1038/nri3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, Ho JW, Nordon RE, Harvey RP (2019) Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. https://doi.org/10.7554/eLife.43882

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fernandez DM, Giannarelli C (2022) Immune cell profiling in atherosclerosis: role in research and precision medicine. Nat Rev Cardiol 19:43–58. https://doi.org/10.1038/s41569-021-00589-2

    Article  PubMed  Google Scholar 

  52. Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED, Amadori L, Khan NS, Wong CK, Shamailova R, Hill CA, Wang Z, Remark R, Li JR, Pina C, Faries C, Awad AJ, Moss N, Bjorkegren JLM, Kim-Schulze S, Gnjatic S, Ma’ayan A, Mocco J, Faries P, Merad M, Giannarelli C (2019) Single-cell immune landscape of human atherosclerotic plaques. Nat Med 25:1576–1588. https://doi.org/10.1038/s41591-019-0590-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Forte E, Furtado MB, Rosenthal N (2018) The interstitium in cardiac repair: role of the immune-stromal cell interplay. Nat Rev Cardiol 15:601–616. https://doi.org/10.1038/s41569-018-0077-x

    Article  CAS  PubMed  Google Scholar 

  54. Forte E, Skelly DA, Chen M, Daigle S, Morelli KA, Hon O, Philip VM, Costa MW, Rosenthal NA, Furtado MB (2020) Dynamic interstitial cell response during myocardial infarction predicts resilience to rupture in genetically diverse mice. Cell Rep 30:3149-3163.e3146. https://doi.org/10.1016/j.celrep.2020.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fu X, Khalil H, Kanisicak O, Boyer JG, Vagnozzi RJ, Maliken BD, Sargent MA, Prasad V, Valiente-Alandi I, Blaxall BC, Molkentin JD (2018) Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest 128:2127–2143. https://doi.org/10.1172/jci98215

    Article  PubMed  PubMed Central  Google Scholar 

  56. Furkel J, Knoll M, Din S, Bogert NV, Seeger T, Frey N, Abdollahi A, Katus HA, Konstandin MH (2021) C-MORE: A high-content single-cell morphology recognition methodology for liquid biopsies toward personalized cardiovascular medicine. Cell Rep Med 2:100436. https://doi.org/10.1016/j.xcrm.2021.100436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Galkina E, Kadl A, Sanders J, Varughese D, Sarembock IJ, Ley K (2006) Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med 203:1273–1282. https://doi.org/10.1084/jem.20052205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gladka MM, Molenaar B, de Ruiter H, van der Elst S, Tsui H, Versteeg D, Lacraz GPA, Huibers MMH, van Oudenaarden A, van Rooij E (2018) Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 138:166–180. https://doi.org/10.1161/circulationaha.117.030742

    Article  CAS  PubMed  Google Scholar 

  59. Goldberger JJ, Arora R, Buckley U, Shivkumar K (2019) Autonomic nervous system dysfunction: JACC focus seminar. J Am Coll Cardiol 73:1189–1206. https://doi.org/10.1016/j.jacc.2018.12.064

    Article  PubMed  PubMed Central  Google Scholar 

  60. Goodyer WR, Beyersdorf BM, Paik DT, Tian L, Li G, Buikema JW, Chirikian O, Choi S, Venkatraman S, Adams EL, Tessier-Lavigne M, Wu JC, Wu SM (2019) Transcriptomic profiling of the developing cardiac conduction system at single-cell resolution. Circ Res 125:379–397. https://doi.org/10.1161/circresaha.118.314578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, Garner H, Geissmann F, Glass CK (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340. https://doi.org/10.1016/j.cell.2014.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grootaert MOJ, Bennett MR (2021) Vascular smooth muscle cells in atherosclerosis: time for a re-assessment. Cardiovasc Res 117:2326–2339. https://doi.org/10.1093/cvr/cvab046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hadi T, Boytard L, Silvestro M, Alebrahim D, Jacob S, Feinstein J, Barone K, Spiro W, Hutchison S, Simon R, Rateri D, Pinet F, Fenyo D, Adelman M, Moore KJ, Eltzschig HK, Daugherty A, Ramkhelawon B (2018) Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nat Commun 9:5022. https://doi.org/10.1038/s41467-018-07495-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks GJ, Larsson AJM, Faridani OR, Sandberg R (2020) Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat Biotechnol 38:708–714. https://doi.org/10.1038/s41587-020-0497-0

    Article  CAS  PubMed  Google Scholar 

  65. Hu Z, Liu W, Hua X, Chen X, Chang Y, Hu Y, Xu Z, Song J (2021) Single-cell transcriptomic atlas of different human cardiac arteries identifies cell types associated with vascular physiology. Arterioscler Thromb Vasc Biol 41:1408–1427. https://doi.org/10.1161/atvbaha.120.315373

    Article  CAS  PubMed  Google Scholar 

  66. Hua X, Hu G, Hu Q, Chang Y, Hu Y, Gao L, Chen X, Yang PC, Zhang Y, Li M, Song J (2020) Single-cell RNA sequencing to dissect the immunological network of autoimmune myocarditis. Circulation 142:384–400. https://doi.org/10.1161/circulationaha.119.043545

    Article  CAS  PubMed  Google Scholar 

  67. Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, Hucker WJ, Wülfers EM, Seemann G, Courties G, Iwamoto Y, Sun Y, Savol AJ, Sager HB, Lavine KJ, Fishbein GA, Capen DE, Da Silva N, Miquerol L, Wakimoto H, Seidman CE, Seidman JG, Sadreyev RI, Naxerova K, Mitchell RN, Brown D, Libby P, Weissleder R, Swirski FK, Kohl P, Vinegoni C, Milan DJ, Ellinor PT, Nahrendorf M (2017) Macrophages facilitate electrical conduction in the heart. Cell 169:510-522.e520. https://doi.org/10.1016/j.cell.2017.03.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kannan S, Miyamoto M, Lin BL, Zhu R, Murphy S, Kass DA, Andersen P, Kwon C (2019) Large particle fluorescence-activated cell sorting enables high-quality single-cell RNA sequencing and functional analysis of adult cardiomyocytes. Circ Res 125:567–569. https://doi.org/10.1161/circresaha.119.315493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE (2020) Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 17:341–359. https://doi.org/10.1038/s41569-019-0331-x

    Article  PubMed  PubMed Central  Google Scholar 

  70. Katzenelenbogen Y, Sheban F, Yalin A, Yofe I, Svetlichnyy D, Jaitin DA, Bornstein C, Moshe A, Keren-Shaul H, Cohen M, Wang SY, Li B, David E, Salame TM, Weiner A, Amit I (2020) Coupled scRNA-Seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182:872-885.e819. https://doi.org/10.1016/j.cell.2020.06.032

    Article  CAS  PubMed  Google Scholar 

  71. Kester L, van Oudenaarden A (2018) Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 23:166–179. https://doi.org/10.1016/j.stem.2018.04.014

    Article  CAS  PubMed  Google Scholar 

  72. Kharchenko PV (2021) The triumphs and limitations of computational methods for scRNA-seq. Nat Methods 18:723–732. https://doi.org/10.1038/s41592-021-01171-x

    Article  CAS  PubMed  Google Scholar 

  73. Kim D, Kobayashi T, Voisin B, Jo JH, Sakamoto K, Jin SP, Kelly M, Pasieka HB, Naff JL, Meyerle JH, Ikpeama ID, Fahle GA, Davis FP, Rosenzweig SD, Alejo JC, Pittaluga S, Kong HH, Freeman AF, Nagao K (2020) Targeted therapy guided by single-cell transcriptomic analysis in drug-induced hypersensitivity syndrome: a case report. Nat Med 26:236–243. https://doi.org/10.1038/s41591-019-0733-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim JB, Zhao Q, Nguyen T, Pjanic M, Cheng P, Wirka R, Travisano S, Nagao M, Kundu R, Quertermous T (2020) Environment-sensing Aryl hydrocarbon receptor inhibits the chondrogenic fate of modulated smooth muscle cells in atherosclerotic lesions. Circulation 142:575–590. https://doi.org/10.1161/circulationaha.120.045981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim K, Shim D, Lee JS, Zaitsev K, Williams JW, Kim KW, Jang MY, Seok Jang H, Yun TJ, Lee SH, Yoon WK, Prat A, Seidah NG, Choi J, Lee SP, Yoon SH, Nam JW, Seong JK, Oh GT, Randolph GJ, Artyomov MN, Cheong C, Choi JH (2018) Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ Res 123:1127–1142. https://doi.org/10.1161/circresaha.118.312804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kimura K, Ieda M, Fukuda K (2012) Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res 110:325–336. https://doi.org/10.1161/circresaha.111.257253

    Article  CAS  PubMed  Google Scholar 

  77. Kleinbongard P, Heusch G (2022) A fresh look at coronary microembolization. Nat Rev Cardiol 19:265–280. https://doi.org/10.1038/s41569-021-00632-2

    Article  PubMed  Google Scholar 

  78. Koenig AL, Shchukina I, Amrute J, Andhey PS, Zaitsev K, Lai L, Bajpai G, Bredemeyer A, Smith G, Jones C, Terrebonne E, Rentschler SL, Artyomov MN, Lavine KJ (2022) Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat Cardiovasc Res 1:263–280. https://doi.org/10.1038/s44161-022-00028-6

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kogan PS, Wirth F, Tomar A, Darr J, Teperino R, Lahm H, Dreßen M, Puluca N, Zhang Z, Neb I, Beck N, Luzius T, de la Osa de la Rosa L, Gärtner K, Hüls C, Zeidler R, Ramanujam D, Engelhardt S, Wenk C, Holdt LM, Mononen M, Sahara M, Cleuziou J, Hörer J, Lange R, Krane M, Doppler SA (2022) Uncovering the molecular identity of cardiosphere-derived cells (CDCs) by single-cell RNA sequencing. Basic Res Cardiol 117:11 https://doi.org/10.1007/s00395-022-00913-y

  80. Kohela A, van Kampen SJ, Moens T, Wehrens M, Molenaar B, Boogerd CJ, Monshouwer-Kloots J, Perini I, Goumans MJ, Smits AM, van Tintelen JP, van Rooij E (2021) Epicardial differentiation drives fibro-fatty remodeling in arrhythmogenic cardiomyopathy. Sci Transl Med. https://doi.org/10.1126/scitranslmed.abf2750

    Article  PubMed  Google Scholar 

  81. Kong SL, Li H, Tai JA, Courtois ET, Poh HM, Lau DP, Haw YX, Iyer NG, Tan DSW, Prabhakar S, Ruff D, Hillmer AM (2019) Concurrent single-cell RNA and targeted DNA sequencing on an automated platform for comeasurement of genomic and transcriptomic signatures. Clin Chem 65:272–281. https://doi.org/10.1373/clinchem.2018.295717

    Article  CAS  PubMed  Google Scholar 

  82. Kovacic JC, Dimmeler S, Harvey RP, Finkel T, Aikawa E, Krenning G, Baker AH (2019) Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol 73:190–209. https://doi.org/10.1016/j.jacc.2018.09.089

    Article  PubMed  PubMed Central  Google Scholar 

  83. Krstevski C, Cohen CD, Dona MSI, Pinto AR (2020) New perspectives of the cardiac cellular landscape: mapping cellular mediators of cardiac fibrosis using single-cell transcriptomics. Biochem Soc Trans 48:2483–2493. https://doi.org/10.1042/bst20191255

    Article  CAS  PubMed  Google Scholar 

  84. Kuppe C, Ramirez Flores RO, Li Z, Hayat S, Levinson RT, Liao X, Hannani MT, Tanevski J, Wünnemann F, Nagai JS, Halder M, Schumacher D, Menzel S, Schäfer G, Hoeft K, Cheng M, Ziegler S, Zhang X, Peisker F, Kaesler N, Saritas T, Xu Y, Kassner A, Gummert J, Morshuis M, Amrute J, Veltrop RJA, Boor P, Klingel K, Van Laake LW, Vink A, Hoogenboezem RM, Bindels EMJ, Schurgers L, Sattler S, Schapiro D, Schneider RK, Lavine K, Milting H, Costa IG, Saez-Rodriguez J, Kramann R (2022) Spatial multi-omic map of human myocardial infarction. Nature 608:766–777. https://doi.org/10.1038/s41586-022-05060-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lönnerberg P, Furlan A, Fan J, Borm LE, Liu Z, van Bruggen D, Guo J, He X, Barker R, Sundström E, Castelo-Branco G, Cramer P, Adameyko I, Linnarsson S, Kharchenko PV (2018) RNA velocity of single cells. Nature 560:494–498. https://doi.org/10.1038/s41586-018-0414-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lan F, Demaree B, Ahmed N, Abate AR (2017) Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat Biotechnol 35:640–646. https://doi.org/10.1038/nbt.3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, Ornitz DM, Randolph GJ, Mann DL (2014) Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci U S A 111:16029–16034. https://doi.org/10.1073/pnas.1406508111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lazarus A, Keshet E (2011) Vascular endothelial growth factor and vascular homeostasis. Proc Am Thorac Soc 8:508–511. https://doi.org/10.1513/pats.201102-021MW

    Article  CAS  PubMed  Google Scholar 

  89. Leid J, Carrelha J, Boukarabila H, Epelman S, Jacobsen SE, Lavine KJ (2016) Primitive embryonic macrophages are required for coronary development and maturation. Circ Res 118:1498–1511. https://doi.org/10.1161/circresaha.115.308270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li B, Song X, Guo W, Hou Y, Hu H, Ge W, Fan T, Han Z, Li Z, Yang P, Gao R, Zhao H, Wang J (2021) Single-cell transcriptome profiles reveal fibrocytes as potential targets of cell therapies for abdominal aortic aneurysm. Front Cardiovasc Med 8:753711. https://doi.org/10.3389/fcvm.2021.753711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li Y, Ren P, Dawson A, Vasquez HG, Ageedi W, Zhang C, Luo W, Chen R, Li Y, Kim S, Lu HS, Cassis LA, Coselli JS, Daugherty A, Shen YH, LeMaire SA (2020) Single-cell transcriptome analysis reveals dynamic cell populations and differential gene expression patterns in control and aneurysmal human aortic tissue. Circulation 142:1374–1388. https://doi.org/10.1161/circulationaha.120.046528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li Z, Solomonidis EG, Meloni M, Taylor RS, Duffin R, Dobie R, Magalhaes MS, Henderson BEP, Louwe PA, D’Amico G, Hodivala-Dilke KM, Shah AM, Mills NL, Simons BD, Gray GA, Henderson NC, Baker AH, Brittan M (2019) Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction. Eur Heart J 40:2507–2520. https://doi.org/10.1093/eurheartj/ehz305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liang D, Xue J, Geng L, Zhou L, Lv B, Zeng Q, Xiong K, Zhou H, Xie D, Zhang F, Liu J, Liu Y, Li L, Yang J, Xue Z, Chen YH (2021) Cellular and molecular landscape of mammalian sinoatrial node revealed by single-cell RNA sequencing. Nat Commun 12:287. https://doi.org/10.1038/s41467-020-20448-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lim HY, Lim SY, Tan CK, Thiam CH, Goh CC, Carbajo D, Chew SHS, See P, Chakarov S, Wang XN, Lim LH, Johnson LA, Lum J, Fong CY, Bongso A, Biswas A, Goh C, Evrard M, Yeo KP, Basu R, Wang JK, Tan Y, Jain R, Tikoo S, Choong C, Weninger W, Poidinger M, Stanley RE, Collin M, Tan NS, Ng LG, Jackson DG, Ginhoux F, Angeli V (2018) Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity 49:326-341.e327. https://doi.org/10.1016/j.immuni.2018.06.008

    Article  CAS  PubMed  Google Scholar 

  95. Lin JD, Nishi H, Poles J, Niu X, McCauley C, Rahman K, Brown EJ, Yeung ST, Vozhilla N, Weinstock A, Ramsey SA, Fisher EA, Loke P (2019) Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight. https://doi.org/10.1172/jci.insight.124574

    Article  PubMed  PubMed Central  Google Scholar 

  96. Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, Nadelmann ER, Roberts K, Tuck L, Fasouli ES, DeLaughter DM, McDonough B, Wakimoto H, Gorham JM, Samari S, Mahbubani KT, Saeb-Parsy K, Patone G, Boyle JJ, Zhang H, Zhang H, Viveiros A, Oudit GY, Bayraktar OA, Seidman JG, Seidman CE, Noseda M, Hubner N, Teichmann SA (2020) Cells of the adult human heart. Nature 588:466–472. https://doi.org/10.1038/s41586-020-2797-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu B, Li Y, Zhang L (2021) Analysis and visualization of spatial transcriptomic data. Front Genet 12:785290. https://doi.org/10.3389/fgene.2021.785290

    Article  CAS  PubMed  Google Scholar 

  98. Longo SK, Guo MG, Ji AL, Khavari PA (2021) Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet 22:627–644. https://doi.org/10.1038/s41576-021-00370-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Luecken MD, Theis FJ (2019) Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol 15:e8746. https://doi.org/10.15252/msb.20188746

    Article  PubMed  PubMed Central  Google Scholar 

  100. Luo W, Wang Y, Zhang L, Ren P, Zhang C, Li Y, Azares AR, Zhang M, Guo J, Ghaghada KB, Starosolski ZA, Rajapakshe K, Coarfa C, Li Y, Chen R, Fujiwara K, Abe JI, Coselli JS, Milewicz DM, LeMaire SA, Shen YH (2020) Critical role of cytosolic DNA and its sensing adaptor STING in aortic degeneration, dissection, and rupture. Circulation 141:42–66. https://doi.org/10.1161/circulationaha.119.041460

    Article  CAS  PubMed  Google Scholar 

  101. Manderson JA, Mosse PR, Safstrom JA, Young SB, Campbell GR (1989) Balloon catheter injury to rabbit carotid artery. I Changes in smooth muscle phenotype. Arteriosclerosis 9:289–298. https://doi.org/10.1161/01.atv.9.3.289

    Article  CAS  PubMed  Google Scholar 

  102. Mantri M, Hinchman MM, McKellar DW, Wang MF, Cross ST, Parker JS, De Vlaminck I (2022) Spatiotemporal transcriptomics reveals pathogenesis of viral myocarditis. Nat Cardiovasc Res 1:946–960. https://doi.org/10.1038/s44161-022-00138-1

    Article  PubMed  PubMed Central  Google Scholar 

  103. Markodimitraki CM, Rang FJ, Rooijers K, de Vries SS, Chialastri A, de Luca KL, Lochs SJA, Mooijman D, Dey SS, Kind J (2020) Simultaneous quantification of protein-DNA interactions and transcriptomes in single cells with scDam&T-seq. Nat Protoc 15:1922–1953. https://doi.org/10.1038/s41596-020-0314-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Martini E, Kunderfranco P, Peano C, Carullo P, Cremonesi M, Schorn T, Carriero R, Termanini A, Colombo FS, Jachetti E, Panico C, Faggian G, Fumero A, Torracca L, Molgora M, Cibella J, Pagiatakis C, Brummelman J, Alvisi G, Mazza EMC, Colombo MP, Lugli E, Condorelli G, Kallikourdis M (2019) Single-cell sequencing of mouse heart immune infiltrate in pressure overload-driven heart failure reveals extent of immune activation. Circulation 140:2089–2107. https://doi.org/10.1161/circulationaha.119.041694

    Article  CAS  PubMed  Google Scholar 

  105. McGinnis CS, Murrow LM, Gartner ZJ (2019) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 8:329-337.e324. https://doi.org/10.1016/j.cels.2019.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McLellan MA, Skelly DA, Dona MSI, Squiers GT, Farrugia GE, Gaynor TL, Cohen CD, Pandey R, Diep H, Vinh A, Rosenthal NA, Pinto AR (2020) High-resolution transcriptomic profiling of the heart during chronic stress reveals cellular drivers of cardiac fibrosis and hypertrophy. Circulation 142:1448–1463. https://doi.org/10.1161/circulationaha.119.045115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Meilhac SM, Esner M, Kelly RG, Nicolas JF, Buckingham ME (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6:685–698. https://doi.org/10.1016/s1534-5807(04)00133-9

    Article  CAS  PubMed  Google Scholar 

  108. Mereu E, Lafzi A, Moutinho C, Ziegenhain C, McCarthy DJ, Álvarez-Varela A, Batlle E, Sagar GD, Lau JK, Boutet SC, Sanada C, Ooi A, Jones RC, Kaihara K, Brampton C, Talaga Y, Sasagawa Y, Tanaka K, Hayashi T, Braeuning C, Fischer C, Sauer S, Trefzer T, Conrad C, Adiconis X, Nguyen LT, Regev A, Levin JZ, Parekh S, Janjic A, Wange LE, Bagnoli JW, Enard W, Gut M, Sandberg R, Nikaido I, Gut I, Stegle O, Heyn H (2020) Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat Biotechnol 38:747–755. https://doi.org/10.1038/s41587-020-0469-4

    Article  CAS  PubMed  Google Scholar 

  109. Miano JM, Fisher EA, Majesky MW (2021) Fate and state of vascular smooth muscle cells in atherosclerosis. Circulation 143:2110–2116. https://doi.org/10.1161/circulationaha.120.049922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166

    Article  CAS  PubMed  Google Scholar 

  111. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439. https://doi.org/10.1038/nature06307

    Article  CAS  PubMed  Google Scholar 

  112. Molenaar B, Timmer LT, Droog M, Perini I, Versteeg D, Kooijman L, Monshouwer-Kloots J, de Ruiter H, Gladka MM, van Rooij E (2021) Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair. Commun Biol 4:146. https://doi.org/10.1038/s42003-020-01636-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355. https://doi.org/10.1016/j.cell.2011.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628. https://doi.org/10.1038/nmeth.1226

    Article  CAS  PubMed  Google Scholar 

  115. Murray PJ (2017) Macrophage Polarization. Annu Rev Physiol 79:541–566. https://doi.org/10.1146/annurev-physiol-022516-034339

    Article  CAS  PubMed  Google Scholar 

  116. Musunuru K, Kathiresan S (2019) Genetics of common, complex coronary artery disease. Cell 177:132–145. https://doi.org/10.1016/j.cell.2019.02.015

    Article  CAS  PubMed  Google Scholar 

  117. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ng SY, Wong CK, Tsang SY (2010) Differential gene expressions in atrial and ventricular myocytes: insights into the road of applying embryonic stem cell-derived cardiomyocytes for future therapies. Am J Physiol Cell Physiol 299:C1234-1249. https://doi.org/10.1152/ajpcell.00402.2009

    Article  CAS  PubMed  Google Scholar 

  119. Nicin L, Schroeter SM, Glaser SF, Schulze-Brüning R, Pham M-D, Hille SS, Yekelchyk M, Kattih B, Abplanalp WT, Tombor L, Müller OJ, Braun T, Meder B, Reich C, Arsalan M, Holubec T, Walther T, Emrich F, Krishnan J, Zeiher AM, John D, Dimmeler S (2022) A human cell atlas of the pressure-induced hypertrophic heart. Nat Cardiovasc Res 1:174–185. https://doi.org/10.1038/s44161-022-00019-7

    Article  Google Scholar 

  120. Örd T, Õunap K, Stolze LK, Aherrahrou R, Nurminen V, Toropainen A, Selvarajan I, Lönnberg T, Aavik E, Ylä-Herttuala S, Civelek M, Romanoski CE, Kaikkonen MU (2021) Single-cell epigenomics and functional fine-mapping of atherosclerosis GWAS loci. Circ Res 129:240–258. https://doi.org/10.1161/circresaha.121.318971

    Article  PubMed  PubMed Central  Google Scholar 

  121. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517. https://doi.org/10.1152/physrev.1995.75.3.487

    Article  CAS  PubMed  Google Scholar 

  122. Paik DT, Cho S, Tian L, Chang HY, Wu JC (2020) Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol 17:457–473. https://doi.org/10.1038/s41569-020-0359-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Palla G, Fischer DS, Regev A, Theis FJ (2022) Spatial components of molecular tissue biology. Nat Biotechnol 40:308–318. https://doi.org/10.1038/s41587-021-01182-1

    Article  CAS  PubMed  Google Scholar 

  124. Pan H, Xue C, Auerbach BJ, Fan J, Bashore AC, Cui J, Yang DY, Trignano SB, Liu W, Shi J, Ihuegbu CO, Bush EC, Worley J, Vlahos L, Laise P, Solomon RA, Connolly ES, Califano A, Sims PA, Zhang H, Li M, Reilly MP (2020) Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 142:2060–2075. https://doi.org/10.1161/circulationaha.120.048378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pedroza AJ, Tashima Y, Shad R, Cheng P, Wirka R, Churovich S, Nakamura K, Yokoyama N, Cui JZ, Iosef C, Hiesinger W, Quertermous T, Fischbein MP (2020) Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in marfan syndrome aortic aneurysm. Arterioscler Thromb Vasc Biol 40:2195–2211. https://doi.org/10.1161/atvbaha.120.314670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, Moore R, McClanahan TK, Sadekova S, Klappenbach JA (2017) Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol 35:936–939. https://doi.org/10.1038/nbt.3973

    Article  CAS  PubMed  Google Scholar 

  127. Pijuan-Sala B, Guibentif C, Göttgens B (2018) Single-cell transcriptional profiling: a window into embryonic cell-type specification. Nat Rev Mol Cell Biol 19:399–412. https://doi.org/10.1038/s41580-018-0002-5

    Article  CAS  PubMed  Google Scholar 

  128. Potente M, Mäkinen T (2017) Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 18:477–494. https://doi.org/10.1038/nrm.2017.36

    Article  CAS  PubMed  Google Scholar 

  129. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C (2017) Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14:979–982. https://doi.org/10.1038/nmeth.4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rao M, Wang X, Guo G, Wang L, Chen S, Yin P, Chen K, Chen L, Zhang Z, Chen X, Hu X, Hu S, Song J (2021) Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level. Basic Res Cardiol 116:55. https://doi.org/10.1007/s00395-021-00897-1

    Article  PubMed  Google Scholar 

  131. Reichart D, Lindberg EL, Maatz H, Miranda AMA, Viveiros A, Shvetsov N, Gärtner A, Nadelmann ER, Lee M, Kanemaru K, Ruiz-Orera J, Strohmenger V, DeLaughter DM, Patone G, Zhang H, Woehler A, Lippert C, Kim Y, Adami E, Gorham JM, Barnett SN, Brown K, Buchan RJ, Chowdhury RA, Constantinou C, Cranley J, Felkin LE, Fox H, Ghauri A, Gummert J, Kanda M, Li R, Mach L, McDonough B, Samari S, Shahriaran F, Yapp C, Stanasiuk C, Theotokis PI, Theis FJ, van den Bogaerdt A, Wakimoto H, Ware JS, Worth CL, Barton PJR, Lee YA, Teichmann SA, Milting H, Noseda M, Oudit GY, Heinig M, Seidman JG, Hubner N, Seidman CE (2022) Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science. https://doi.org/10.1126/science.abo1984

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ren Z, Yu P, Li D, Li Z, Liao Y, Wang Y, Zhou B, Wang L (2020) Single-cell reconstruction of progression trajectory reveals intervention principles in pathological cardiac hypertrophy. Circulation 141:1704–1719. https://doi.org/10.1161/circulationaha.119.043053

    Article  CAS  PubMed  Google Scholar 

  133. Replogle JM, Norman TM, Xu A, Hussmann JA, Chen J, Cogan JZ, Meer EJ, Terry JM, Riordan DP, Srinivas N, Fiddes IT, Arthur JG, Alvarado LJ, Pfeiffer KA, Mikkelsen TS, Weissman JS, Adamson B (2020) Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat Biotechnol 38:954–961. https://doi.org/10.1038/s41587-020-0470-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Reutelingsperger C, Schurgers L (2018) Coronary artery calcification: a Janus-faced biomarker? JACC Cardiovasc Imaging 11:1324–1326. https://doi.org/10.1016/j.jcmg.2017.04.009

    Article  PubMed  Google Scholar 

  135. Rhee S, Paik DT, Yang JY, Nagelberg D, Williams I, Tian L, Roth R, Chandy M, Ban J, Belbachir N, Kim S, Zhang H, Phansalkar R, Wong KM, King DA, Valdez C, Winn VD, Morrison AJ, Wu JC, Red-Horse K (2021) Endocardial/endothelial angiocrines regulate cardiomyocyte development and maturation and induce features of ventricular non-compaction. Eur Heart J 42:4264–4276. https://doi.org/10.1093/eurheartj/ehab298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33:1165–1172. https://doi.org/10.1038/nbt.3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ruiz-Villalba A, Romero JP, Hernández SC, Vilas-Zornoza A, Fortelny N, Castro-Labrador L, San Martin-Uriz P, Lorenzo-Vivas E, García-Olloqui P, Palacio M, Gavira JJ, Bastarrika G, Janssens S, Wu M, Iglesias E, Abizanda G, de Morentin XM, Lasaga M, Planell N, Bock C, Alignani D, Medal G, Prudovsky I, Jin YR, Ryzhov S, Yin H, Pelacho B, Gomez-Cabrero D, Lindner V, Lara-Astiaso D, Prósper F (2020) Single-cell RNA sequencing analysis reveals a crucial role for CTHRC1 (collagen triple helix repeat containing 1) cardiac fibroblasts after myocardial infarction. Circulation 142:1831–1847. https://doi.org/10.1161/circulationaha.119.044557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV, Li L, Kimura T, Soliman OY, Papp TE, Tam YK, Mui BL, Albelda SM, Puré E, June CH, Aghajanian H, Weissman D, Parhiz H, Epstein JA (2022) CAR T cells produced in vivo to treat cardiac injury. Science 375:91–96. https://doi.org/10.1126/science.abm0594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502. https://doi.org/10.1038/nbt.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Satpathy AT, Saligrama N, Buenrostro JD, Wei Y, Wu B, Rubin AJ, Granja JM, Lareau CA, Li R, Qi Y, Parker KR, Mumbach MR, Serratelli WS, Gennert DG, Schep AN, Corces MR, Khodadoust MS, Kim YH, Khavari PA, Greenleaf WJ, Davis MM, Chang HY (2018) Transcript-indexed ATAC-seq for precision immune profiling. Nat Med 24:580–590. https://doi.org/10.1038/s41591-018-0008-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Selewa A, Dohn R, Eckart H, Lozano S, Xie B, Gauchat E, Elorbany R, Rhodes K, Burnett J, Gilad Y, Pott S, Basu A (2020) Systematic comparison of high-throughput single-cell and single-nucleus transcriptomes during cardiomyocyte differentiation. Sci Rep 10:1535. https://doi.org/10.1038/s41598-020-58327-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Setliff I, Shiakolas AR, Pilewski KA, Murji AA, Mapengo RE, Janowska K, Richardson S, Oosthuysen C, Raju N, Ronsard L, Kanekiyo M, Qin JS, Kramer KJ, Greenplate AR, McDonnell WJ, Graham BS, Connors M, Lingwood D, Acharya P, Morris L, Georgiev IS (2019) High-throughput mapping of B cell receptor sequences to antigen specificity. Cell 179:1636-1646.e1615. https://doi.org/10.1016/j.cell.2019.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233:6425–6440. https://doi.org/10.1002/jcp.26429

    Article  CAS  PubMed  Google Scholar 

  144. Sharir R, Semo J, Shimoni S, Ben-Mordechai T, Landa-Rouben N, Maysel-Auslender S, Shaish A, Entin-Meer M, Keren G, George J (2014) Experimental myocardial infarction induces altered regulatory T cell hemostasis, and adoptive transfer attenuates subsequent remodeling. PLoS ONE 9:e113653. https://doi.org/10.1371/journal.pone.0113653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Skelly DA, Squiers GT, McLellan MA, Bolisetty MT, Robson P, Rosenthal NA, Pinto AR (2018) Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep 22:600–610. https://doi.org/10.1016/j.celrep.2017.12.072

    Article  CAS  PubMed  Google Scholar 

  146. Slyper M, Porter CBM, Ashenberg O, Waldman J, Drokhlyansky E, Wakiro I, Smillie C, Smith-Rosario G, Wu J, Dionne D, Vigneau S, Jané-Valbuena J, Tickle TL, Napolitano S, Su MJ, Patel AG, Karlstrom A, Gritsch S, Nomura M, Waghray A, Gohil SH, Tsankov AM, Jerby-Arnon L, Cohen O, Klughammer J, Rosen Y, Gould J, Nguyen L, Hofree M, Tramontozzi PJ, Li B, Wu CJ, Izar B, Haq R, Hodi FS, Yoon CH, Hata AN, Baker SJ, Suvà ML, Bueno R, Stover EH, Clay MR, Dyer MA, Collins NB, Matulonis UA, Wagle N, Johnson BE, Rotem A, Rozenblatt-Rosen O, Regev A (2020) A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat Med 26:792–802. https://doi.org/10.1038/s41591-020-0844-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11:817–820. https://doi.org/10.1038/nmeth.3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Srikakulapu P, Upadhye A, Rosenfeld SM, Marshall MA, McSkimming C, Hickman AW, Mauldin IS, Ailawadi G, Lopes MBS, Taylor AM, McNamara CA (2017) Perivascular adipose tissue harbors atheroprotective IgM-producing B cells. Front Physiol 8:719. https://doi.org/10.3389/fphys.2017.00719

    Article  PubMed  PubMed Central  Google Scholar 

  149. Stables MJ, Shah S, Camon EB, Lovering RC, Newson J, Bystrom J, Farrow S, Gilroy DW (2011) Transcriptomic analyses of murine resolution-phase macrophages. Blood 118:e192-208. https://doi.org/10.1182/blood-2011-04-345330

    Article  CAS  PubMed  Google Scholar 

  150. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, Satija R, Smibert P (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14:865–868. https://doi.org/10.1038/nmeth.4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Stöger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, Daemen MJ, Lutgens E, de Winther MP (2012) Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225:461–468. https://doi.org/10.1016/j.atherosclerosis.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  152. Su T, Stanley G, Sinha R, D’Amato G, Das S, Rhee S, Chang AH, Poduri A, Raftrey B, Dinh TT, Roper WA, Li G, Quinn KE, Caron KM, Wu S, Miquerol L, Butcher EC, Weissman I, Quake S, Red-Horse K (2018) Single-cell analysis of early progenitor cells that build coronary arteries. Nature 559:356–362. https://doi.org/10.1038/s41586-018-0288-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sun D, Guan X, Moran AE, Wu LY, Qian DZ, Schedin P, Dai MS, Danilov AV, Alumkal JJ, Adey AC, Spellman PT, Xia Z (2022) Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nat Biotechnol 40:527–538. https://doi.org/10.1038/s41587-021-01091-3

    Article  CAS  PubMed  Google Scholar 

  154. Tajik M, Baharfar M, Donald WA (2022) Single-cell mass spectrometry. Trends Biotechnol 40:1374–1392. https://doi.org/10.1016/j.tibtech.2022.04.004

    Article  CAS  PubMed  Google Scholar 

  155. Tallquist MD (2020) Cardiac fibroblast diversity. annu Rev Physiol 82:63–78. https://doi.org/10.1146/annurev-physiol-021119-034527

    Article  CAS  PubMed  Google Scholar 

  156. Tallquist MD, Molkentin JD (2017) Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol 14:484–491. https://doi.org/10.1038/nrcardio.2017.57

    Article  PubMed  PubMed Central  Google Scholar 

  157. Tang TT, Yuan J, Zhu ZF, Zhang WC, Xiao H, Xia N, Yan XX, Nie SF, Liu J, Zhou SF, Li JJ, Yao R, Liao MY, Tu X, Liao YH, Cheng X (2012) Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res Cardiol 107:232. https://doi.org/10.1007/s00395-011-0232-6

    Article  PubMed  Google Scholar 

  158. Thomas H, Diamond J, Vieco A, Chaudhuri S, Shinnar E, Cromer S, Perel P, Mensah GA, Narula J, Johnson CO, Roth GA, Moran AE (2018) Global atlas of cardiovascular disease 2000–2016: The path to prevention and control. Glob Heart 13:143–163. https://doi.org/10.1016/j.gheart.2018.09.511

    Article  PubMed  Google Scholar 

  159. Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin JR, Cohen O, Shah P, Lu D, Genshaft AS, Hughes TK, Ziegler CG, Kazer SW, Gaillard A, Kolb KE, Villani AC, Johannessen CM, Andreev AY, Van Allen EM, Bertagnolli M, Sorger PK, Sullivan RJ, Flaherty KT, Frederick DT, Jané-Valbuena J, Yoon CH, Rozenblatt-Rosen O, Shalek AK, Regev A, Garraway LA (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–196. https://doi.org/10.1126/science.aad0501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tombor LS, John D, Glaser SF, Luxán G, Forte E, Furtado M, Rosenthal N, Baumgarten N, Schulz MH, Wittig J, Rogg EM, Manavski Y, Fischer A, Muhly-Reinholz M, Klee K, Looso M, Selignow C, Acker T, Bibli SI, Fleming I, Patrick R, Harvey RP, Abplanalp WT, Dimmeler S (2021) Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction. Nat Commun 12:681. https://doi.org/10.1038/s41467-021-20905-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386. https://doi.org/10.1038/nbt.2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tucker NR, Chaffin M, Fleming SJ, Hall AW, Parsons VA, Bedi KC Jr, Akkad AD, Herndon CN, Arduini A, Papangeli I, Roselli C, Aguet F, Choi SH, Ardlie KG, Babadi M, Margulies KB, Stegmann CM, Ellinor PT (2020) Transcriptional and cellular diversity of the human heart. Circulation 142:466–482. https://doi.org/10.1161/circulationaha.119.045401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Vafadarnejad E, Rizzo G, Krampert L, Arampatzi P, Arias-Loza AP, Nazzal Y, Rizakou A, Knochenhauer T, Bandi SR, Nugroho VA, Schulz DJJ, Roesch M, Alayrac P, Vilar J, Silvestre JS, Zernecke A, Saliba AE, Cochain C (2020) Dynamics of cardiac neutrophil diversity in murine myocardial infarction. Circ Res 127:e232–e249. https://doi.org/10.1161/circresaha.120.317200

    Article  CAS  PubMed  Google Scholar 

  164. Vallejo J, Cochain C, Zernecke A, Ley K (2021) Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-Seq. Cardiovasc Res 117:2537–2543. https://doi.org/10.1093/cvr/cvab260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wan E, Yeap XY, Dehn S, Terry R, Novak M, Zhang S, Iwata S, Han X, Homma S, Drosatos K, Lomasney J, Engman DM, Miller SD, Vaughan DE, Morrow JP, Kishore R, Thorp EB (2013) Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ Res 113:1004–1012. https://doi.org/10.1161/circresaha.113.301198

    Article  CAS  PubMed  Google Scholar 

  166. Wang L, Yu P, Zhou B, Song J, Li Z, Zhang M, Guo G, Wang Y, Chen X, Han L, Hu S (2020) Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol 22:108–119. https://doi.org/10.1038/s41556-019-0446-7

    Article  CAS  PubMed  Google Scholar 

  167. Wang Y, Dubland JA, Allahverdian S, Asonye E, Sahin B, Jaw JE, Sin DD, Seidman MA, Leeper NJ, Francis GA (2019) Smooth muscle cells contribute the majority of foam cells in ApoE (Apolipoprotein E)-deficient mouse atherosclerosis. Arterioscler Thromb Vasc Biol 39:876–887. https://doi.org/10.1161/atvbaha.119.312434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wehrens M, de Leeuw AE, Wright-Clark M, Eding JEC, Boogerd CJ, Molenaar B, van der Kraak PH, Kuster DWD, van der Velden J, Michels M, Vink A, van Rooij E (2022) Single-cell transcriptomics provides insights into hypertrophic cardiomyopathy. Cell Rep 39:110809. https://doi.org/10.1016/j.celrep.2022.110809

    Article  CAS  PubMed  Google Scholar 

  169. Weirather J, Hofmann UD, Beyersdorf N, Ramos GC, Vogel B, Frey A, Ertl G, Kerkau T, Frantz S (2014) Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res 115:55–67. https://doi.org/10.1161/circresaha.115.303895

    Article  CAS  PubMed  Google Scholar 

  170. Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, Hamers AAJ, Cochain C, Vafadarnejad E, Saliba AE, Zernecke A, Pramod AB, Ghosh AK, Anto Michel N, Hoppe N, Hilgendorf I, Zirlik A, Hedrick CC, Ley K, Wolf D (2018) Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res 122:1675–1688. https://doi.org/10.1161/circresaha.117.312513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wirka RC, Wagh D, Paik DT, Pjanic M, Nguyen T, Miller CL, Kundu R, Nagao M, Coller J, Koyano TK, Fong R, Woo YJ, Liu B, Montgomery SB, Wu JC, Zhu K, Chang R, Alamprese M, Tallquist MD, Kim JB, Quertermous T (2019) Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med 25:1280–1289. https://doi.org/10.1038/s41591-019-0512-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wolf FA, Angerer P, Theis FJ (2018) SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19:15. https://doi.org/10.1186/s13059-017-1382-0

    Article  PubMed  PubMed Central  Google Scholar 

  173. Wolock SL, Lopez R, Klein AM (2019) Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst 8:281-291.e289. https://doi.org/10.1016/j.cels.2018.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wong CX, Ganesan AN, Selvanayagam JB (2017) Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. Eur Heart J 38:1294–1302. https://doi.org/10.1093/eurheartj/ehw045

    Article  CAS  PubMed  Google Scholar 

  175. Woodworth MB, Girskis KM, Walsh CA (2017) Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat Rev Genet 18:230–244. https://doi.org/10.1038/nrg.2016.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wu H, Kirita Y, Donnelly EL, Humphreys BD (2019) Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J Am Soc Nephrol 30:23–32. https://doi.org/10.1681/asn.2018090912

    Article  CAS  PubMed  Google Scholar 

  177. Wu T, Liang Z, Zhang Z, Liu C, Zhang L, Gu Y, Peterson KL, Evans SM, Fu XD, Chen J (2022) PRDM16 is a compact myocardium-enriched transcription factor required to maintain compact myocardial cardiomyocyte identity in left ventricle. Circulation 145:586–602. https://doi.org/10.1161/circulationaha.121.056666

    Article  CAS  PubMed  Google Scholar 

  178. Wu X, Reboll MR, Korf-Klingebiel M, Wollert KC (2021) Angiogenesis after acute myocardial infarction. Cardiovasc Res 117:1257–1273. https://doi.org/10.1093/cvr/cvaa287

    Article  CAS  PubMed  Google Scholar 

  179. Xia N, Lu Y, Gu M, Li N, Liu M, Jiao J, Zhu Z, Li J, Li D, Tang T, Lv B, Nie S, Zhang M, Liao M, Liao Y, Yang X, Cheng X (2020) A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 142:1956–1973. https://doi.org/10.1161/circulationaha.120.046789

    Article  CAS  PubMed  Google Scholar 

  180. Xu X, Huang S, Xiao X, Sun Q, Liang X, Chen S, Zhao Z, Huo Z, Tu S, Li Y (2020) Challenges and clinical strategies of CAR T-cell therapy for acute lymphoblastic leukemia: overview and developments. Front Immunol 11:569117. https://doi.org/10.3389/fimmu.2020.569117

    Article  CAS  PubMed  Google Scholar 

  181. Xu Y, Jiang K, Chen F, Qian J, Wang D, Wu Y, Zhou C, Yu Y, Chen K, Hwa J, Yang B, Wang H, Xiang Y (2022) Bone marrow-derived naïve B lymphocytes improve heart function after myocardial infarction: a novel cardioprotective mechanism for empagliflozin. Basic Res Cardiol 117:47. https://doi.org/10.1007/s00395-022-00956-1

    Article  CAS  PubMed  Google Scholar 

  182. Xu Y, Kovacic JC (2022) Endothelial to mesenchymal transition in health and disease. Annu Rev Physiol. https://doi.org/10.1146/annurev-physiol-032222-080806

    Article  PubMed  Google Scholar 

  183. Yap C, Mieremet A, de Vries CJM, Micha D, de Waard V (2021) Six shades of vascular smooth muscle cells illuminated by KLF4 (Krüppel-like factor 4). Arterioscler Thromb Vasc Biol 41:2693–2707. https://doi.org/10.1161/atvbaha.121.316600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yekelchyk M, Guenther S, Preussner J, Braun T (2019) Mono- and multi-nucleated ventricular cardiomyocytes constitute a transcriptionally homogenous cell population. Basic Res Cardiol 114:36. https://doi.org/10.1007/s00395-019-0744-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yu L, Zhang J, Gao A, Zhang M, Wang Z, Yu F, Guo X, Su G, Zhang Y, Zhang M, Zhang C (2022) An intersegmental single-cell profile reveals aortic heterogeneity and identifies a novel Malat1(+) vascular smooth muscle subtype involved in abdominal aortic aneurysm formation. Signal Transduct Target Ther 7:125. https://doi.org/10.1038/s41392-022-00943-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zaman R, Epelman S (2022) Resident cardiac macrophages: Heterogeneity and function in health and disease. Immunity 55:1549–1563. https://doi.org/10.1016/j.immuni.2022.08.009

    Article  CAS  PubMed  Google Scholar 

  187. Zappia L, Phipson B, Oshlack A (2018) Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. PLoS Comput Biol 14:e1006245. https://doi.org/10.1371/journal.pcbi.1006245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zernecke A, Winkels H, Cochain C, Williams JW, Wolf D, Soehnlein O, Robbins CS, Monaco C, Park I, McNamara CA, Binder CJ, Cybulsky MI, Scipione CA, Hedrick CC, Galkina EV, Kyaw T, Ghosheh Y, Dinh HQ, Ley K (2020) Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ Res 127:402–426. https://doi.org/10.1161/circresaha.120.316903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhang F, Guo X, Xia Y, Mao L (2021) An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis. Cell Mol Life Sci 79:6. https://doi.org/10.1007/s00018-021-04079-z

    Article  CAS  PubMed  Google Scholar 

  190. Zhang Q, Fei L, Han R, Huang R, Wang Y, Chen H, Yao B, Qiao N, Wang Z, Ma Z, Ye Z, Zhang Y, Wang W, Wang Y, Kong L, Shou X, Cao X, Zhou X, Shen M, Cheng H, Yao Z, Zhang C, Guo G, Zhao Y (2022) Single-cell transcriptome reveals cellular hierarchies and guides p-EMT-targeted trial in skull base chordoma. Cell Discov 8:94. https://doi.org/10.1038/s41421-022-00459-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhao P, Yao Q, Zhang PJ, The E, Zhai Y, Ao L, Jarrett MJ, Dinarello CA, Fullerton DA, Meng X (2021) Single-cell RNA-seq reveals a critical role of novel pro-inflammatory EndMT in mediating adverse remodeling in coronary artery-on-a-chip. Sci Adv. https://doi.org/10.1126/sciadv.abg1694

    Article  PubMed  PubMed Central  Google Scholar 

  192. Zhao TX, Sriranjan RS, Tuong ZK, Lu Y, Sage AP, Nus M, Hubsch A, Kaloyirou F, Vamvaka E, Helmy J, Kostapanos M, Jalaludeen N, Klatzmann D, Tedgui A, Rudd JHF, Horton SJ, Huntly BJP, Hoole SP, Bond SP, Clatworthy MR, Cheriyan J, Mallat Z (2022) Regulatory T-cell response to low-dose interleukin-2 in ischemic heart disease. NEJM Evid. https://doi.org/10.1056/EVIDoa2100009

    Article  PubMed  PubMed Central  Google Scholar 

  193. Zhou B, Shi X, Tang X, Zhao Q, Wang L, Yao F, Hou Y, Wang X, Feng W, Wang L, Sun X, Wang L, Hu S (2022) Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes. Signal Transduct Target Ther 7:254. https://doi.org/10.1038/s41392-022-01044-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Shen Song, Liang Chen for providing constructive suggestions. We appreciate Shengkang Huang, Sifei Chen, Xinyi Xiao, Yufei Yang, Yazhuo Wang for discussion, data collection and polishing the manuscript and figures. The figures were created with BioRender.com.

Funding

This work was supported by the National Natural Science Fund for Distinguished Young Scholars of China (82125004) and the National Natural Science Fund for General Program of China (81670376).

Author information

Authors and Affiliations

Authors

Contributions

SH, JS supervised the study. XX wrote the manuscript and prepared the tables and figures. XX, XH, HM, JS and SH participated in the revision of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shengshou Hu or Jiangping Song.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 164 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Hua, X., Mo, H. et al. Single-cell RNA sequencing to identify cellular heterogeneity and targets in cardiovascular diseases: from bench to bedside. Basic Res Cardiol 118, 7 (2023). https://doi.org/10.1007/s00395-022-00972-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-022-00972-1

Keywords

Navigation