Skip to main content
Log in

Single-cell transcriptomic identified HIF1A as a target for attenuating acute rejection after heart transplantation

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Acute rejection (AR) is an important contributor to graft failure, which remains a leading cause of death after heart transplantation (HTX). The regulation of immune metabolism has become a new hotspot in the development of immunosuppressive drugs. In this study, Increased glucose metabolism of cardiac macrophages was found in patients with AR. To find new therapeutic targets of immune metabolism regulation for AR, CD45+ immune cells extracted from murine isografts, allografts, and untransplanted donor hearts were explored by single-cell RNA sequencing. Total 20 immune cell subtypes were identified among 46,040 cells. The function of immune cells in AR were illustrated simultaneously. Cardiac resident macrophages were substantially replaced by monocytes and proinflammatory macrophages during AR. Monocytes/macrophages in AR allograft were more active in antigen presentation and inflammatory recruitment ability, and glycolysis. Based on transcription factor regulation analysis, we found that the increase of glycolysis in monocytes/macrophages was mainly regulated by HIF1A. Inhibition of HIF1A could alleviate inflammatory cells infiltration in AR. To find out the effect of HIF1A on AR, CD45+ immune cells extracted from allografts after HIF1A inhibitor treatment were explored by single-cell RNA sequencing. HIF1A inhibitor could reduce the antigen presenting ability and pro-inflammatory ability of macrophages, and reduce the infiltration of Cd4+ and Cd8a+ T cells in AR. The expression of Hif1α in AR monocytes/macrophages was regulated by pyruvate kinase 2. Higher expression of HIF1A in macrophages was also detected in human hearts with AR. These indicated HIF1A may serve as a potential target for attenuating AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study including scRNA-seq data are available from https://figshare.com/s/11d8b3c99165c5fd8cd3.

Code availability

R scripts for single cell data analysis are available from the corresponding author upon reasonable request.

References

  1. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine JC, Geurts P, Aerts J, van den Oord J, Atak ZK, Wouters J, Aerts S (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14:1083–1086. https://doi.org/10.1038/nmeth.4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alves-Filho JC, Pålsson-McDermott EM (2016) Pyruvate kinase M2: a potential target for regulating inflammation. Front Immunol 7:145. https://doi.org/10.3389/fimmu.2016.00145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bao M, Wang Y, Liu Y, Shi P, Lu H, Sha W, Weng L, Hanabuchi S, Qin J, Plumas J, Chaperot L, Zhang Z, Liu YJ (2016) NFATC3 promotes IRF7 transcriptional activity in plasmacytoid dendritic cells. J Exp Med 213:2383–2398. https://doi.org/10.1084/jem.20160438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brewitz A, Eickhoff S, Dähling S, Quast T, Bedoui S, Kroczek RA, Kurts C, Garbi N, Barchet W, Iannacone M, Klauschen F, Kolanus W, Kaisho T, Colonna M, Germain RN, Kastenmüller W (2017) CD8(+) T cells orchestrate pDC-XCR1(+) dendritic cell spatial and functional cooperativity to optimize priming. Immunity 46:205–219. https://doi.org/10.1016/j.immuni.2017.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, Zweier JL, Semenza GL (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia–reperfusion injury. Circulation 108:79–85. https://doi.org/10.1161/01.Cir.0000078635.89229.8a

    Article  CAS  PubMed  Google Scholar 

  6. Chen X, Dong S, Zhang N, Chen L, Li MG, Yang PC, Song J (2017) MicroRNA-98 plays a critical role in experimental myocarditis. Int J Cardiol 229:75–81. https://doi.org/10.1016/j.ijcard.2016.11.263

    Article  PubMed  Google Scholar 

  7. Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A, Manjeri GR, Li Y, Ifrim DC, Arts RJ, van der Veer BM, Deen PM, Logie C, O’Neill LA, Willems P, van de Veerdonk FL, van der Meer JW, Ng A, Joosten LA, Wijmenga C, Stunnenberg HG, Xavier RJ, Netea MG (2014) mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345:1250684. https://doi.org/10.1126/science.1250684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Corcoran SE, O’Neill LA (2016) HIF1α and metabolic reprogramming in inflammation. J Clin Investig 126:3699–3707. https://doi.org/10.1172/jci84431

    Article  PubMed  PubMed Central  Google Scholar 

  9. Crespo-Leiro MG, Metra M, Lund LH, Milicic D, Costanzo MR, Filippatos G, Gustafsson F, Tsui S, Barge-Caballero E, De Jonge N, Frigerio M, Hamdan R, Hasin T, Hulsmann M, Nalbantgil S, Potena L, Bauersachs J, Gkouziouta A, Ruhparwar A, Ristic AD, Straburzynska-Migaj E, McDonagh T, Seferovic P, Ruschitzka F (2018) Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 20:1505–1535. https://doi.org/10.1002/ejhf.1236

    Article  PubMed  Google Scholar 

  10. Cuesta-Mateos C, Portero-Sainz I, García-Peydró M, Alcain J, Fuentes P, Juárez-Sánchez R, Pérez-García Y, Mateu-Albero T, Díaz-Fernández P, Vega-Piris L, Sánchez-López BA, Marcos-Jiménez A, Cardeñoso L, Gómez-García de Soria V, Toribio ML, Muñoz-Calleja C (2020) Evaluation of therapeutic targeting of CCR7 in acute graft-versus-host disease. Bone Marrow Transplant 55:1935–1945. https://doi.org/10.1038/s41409-020-0830-8

    Article  CAS  PubMed  Google Scholar 

  11. Dai H, Lan P, Zhao D, Abou-Daya K, Liu W, Chen W, Friday AJ, Williams AL, Sun T, Chen J, Chen W, Mortin-Toth S, Danska JS, Wiebe C, Nickerson P, Li T, Mathews LR, Turnquist HR, Nicotra ML, Gingras S, Takayama E, Kubagawa H, Shlomchik MJ, Oberbarnscheidt MH, Li XC, Lakkis FG (2020) PIRs mediate innate myeloid cell memory to nonself MHC molecules. Science 368:1122–1127. https://doi.org/10.1126/science.aax4040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, Ho JW, Nordon RE, Harvey RP (2019) Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. https://doi.org/10.7554/eLife.43882

    Article  PubMed  PubMed Central  Google Scholar 

  13. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, Yang Y, Wei G, Shen T, Yang X, Xu L, Chen X, Hao Y, Wang P, Zhu C, Ou J, Liang H, Ni T, Zhang X, Zhou X, Deng K, Chen Y, Luo Y, Xu J, Qi H, Wu Y, Ye L (2016) Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature 537:412–428. https://doi.org/10.1038/nature19317

    Article  CAS  PubMed  Google Scholar 

  14. Huang X, Feng Z, Jiang Y, Li J, Xiang Q, Guo S, Yang C, Fei L, Guo G, Zheng L, Wu Y, Chen Y (2019) VSIG4 mediates transcriptional inhibition of Nlrp3 and Il-1β in macrophages. Sci Adv 5:eaau7426. https://doi.org/10.1126/sciadv.aau7426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, Hucker WJ, Wülfers EM, Seemann G, Courties G, Iwamoto Y, Sun Y, Savol AJ, Sager HB, Lavine KJ, Fishbein GA, Capen DE, Da Silva N, Miquerol L, Wakimoto H, Seidman CE, Seidman JG, Sadreyev RI, Naxerova K, Mitchell RN, Brown D, Libby P, Weissleder R, Swirski FK, Kohl P, Vinegoni C, Milan DJ, Ellinor PT, Nahrendorf M (2017) Macrophages facilitate electrical conduction in the heart. Cell 169:510-522.e520. https://doi.org/10.1016/j.cell.2017.03.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keränen MA, Nykänen AI, Krebs R, Pajusola K, Tuuminen R, Alitalo K, Lemström KB (2010) Cardiomyocyte-targeted HIF-1alpha gene therapy inhibits cardiomyocyte apoptosis and cardiac allograft vasculopathy in the rat. J Heart Lung Transplant 29:1058–1066. https://doi.org/10.1016/j.healun.2010.05.021

    Article  PubMed  Google Scholar 

  17. Keränen MA, Tuuminen R, Syrjälä S, Krebs R, Walkinshaw G, Flippin LA, Arend M, Koskinen PK, Nykänen AI, Lemström KB (2013) Differential effects of pharmacological HIF preconditioning of donors versus recipients in rat cardiac allografts. Am J Transplant 13:600–610. https://doi.org/10.1111/ajt.12064

    Article  CAS  PubMed  Google Scholar 

  18. Kimura A, Rieger MA, Simone JM, Chen W, Wickre MC, Zhu BM, Hoppe PS, O’Shea JJ, Schroeder T, Hennighausen L (2009) The transcription factors STAT5A/B regulate GM-CSF-mediated granulopoiesis. Blood 114:4721–4728. https://doi.org/10.1182/blood-2009-04-216390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lauvau G, Chorro L, Spaulding E, Soudja SMH (2014) Inflammatory monocyte effector mechanisms. Cell Immunol 291:32–40. https://doi.org/10.1016/j.cellimm.2014.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li J, Diao B, Guo S, Huang X, Yang C, Feng Z, Yan W, Ning Q, Zheng L, Chen Y, Wu Y (2017) VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism. Nat Commun 8:1322. https://doi.org/10.1038/s41467-017-01327-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liban TJ, Medina EM, Tripathi S, Sengupta S, Henry RW, Buchler NE, Rubin SM (2017) Conservation and divergence of C-terminal domain structure in the retinoblastoma protein family. Proc Natl Acad Sci USA 114:4942–4947. https://doi.org/10.1073/pnas.1619170114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, Nadelmann ER, Roberts K, Tuck L, Fasouli ES, DeLaughter DM, McDonough B, Wakimoto H, Gorham JM, Samari S, Mahbubani KT, Saeb-Parsy K, Patone G, Boyle JJ, Zhang H, Zhang H, Viveiros A, Oudit GY, Bayraktar OA, Seidman JG, Seidman CE, Noseda M, Hubner N, Teichmann SA (2020) Cells of the adult human heart. Nature 588:466–472. https://doi.org/10.1038/s41586-020-2797-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu L, Lu Y, Martinez J, Bi Y, Lian G, Wang T, Milasta S, Wang J, Yang M, Liu G, Green DR, Wang R (2016) Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent. Proc Natl Acad Sci USA 113:1564–1569. https://doi.org/10.1073/pnas.1518000113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lund LH, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dipchand AI, Dobbels F, Goldfarb SB, Levvey BJ, Meiser B, Yusen RD, Stehlik J (2014) The registry of the International Society for Heart and Lung Transplantation: thirty-first official adult heart transplant report—2014; focus theme: retransplantation. J Heart Lung Transplant 33:996–1008. https://doi.org/10.1016/j.healun.2014.08.003

    Article  PubMed  Google Scholar 

  25. Maenosono R, Nian Y, Iske J, Liu Y, Minami K, Rommel T, Martin F, Abdi R, Azuma H, Rosner BA, Zhou H, Milford E, Elkhal A, Tullius SG (2021) Recipient sex and estradiol levels affect transplant outcomes in an age-specific fashion. Am J Transplant 21:3239–3255. https://doi.org/10.1111/ajt.16611

    Article  CAS  PubMed  Google Scholar 

  26. Malone AF, Humphreys BD (2019) Single-cell transcriptomics and solid organ transplantation. Transplantation 103:1776–1782. https://doi.org/10.1097/TP.0000000000002725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McKay D, Shigeoka A, Rubinstein M, Surh C, Sprent J (2006) Simultaneous deletion of MyD88 and Trif delays major histocompatibility and minor antigen mismatch allograft rejection. Eur J Immunol 36:1994–2002. https://doi.org/10.1002/eji.200636249

    Article  CAS  PubMed  Google Scholar 

  28. McNerney ME, Lee KM, Zhou P, Molinero L, Mashayekhi M, Guzior D, Sattar H, Kuppireddi S, Wang CR, Kumar V, Alegre ML (2006) Role of natural killer cell subsets in cardiac allograft rejection. Am J Transplant 6:505–513. https://doi.org/10.1111/j.1600-6143.2005.01226.x

    Article  CAS  PubMed  Google Scholar 

  29. Moffatt SD, Metcalfe SM (2000) Comparison between tacrolimus and cyclosporine as immunosuppressive agents compatible with tolerance induction by CD4/CD8 blockade. Transplantation 69:1724–1726. https://doi.org/10.1097/00007890-200004270-00033

    Article  CAS  PubMed  Google Scholar 

  30. Murphy SP, Porrett PM, Turka LA (2011) Innate immunity in transplant tolerance and rejection. Immunol Rev 241:39–48. https://doi.org/10.1111/j.1600-065X.2011.01009.x

    Article  CAS  PubMed  Google Scholar 

  31. O’Neill LA, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16:553–565. https://doi.org/10.1038/nri.2016.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ochando J, Ordikhani F, Boros P, Jordan S (2019) The innate immune response to allotransplants: mechanisms and therapeutic potentials. Cell Mol Immunol 16:350–356. https://doi.org/10.1038/s41423-019-0216-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ogawa M, Suzuki J, Hishikari K, Takayama K, Tanaka H, Isobe M (2008) Clarithromycin attenuates acute and chronic rejection via matrix metalloproteinase suppression in murine cardiac transplantation. J Am Coll Cardiol 51:1977–1985. https://doi.org/10.1016/j.jacc.2008.01.050

    Article  CAS  PubMed  Google Scholar 

  34. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE, van den Bosch MW, Quinn SR, Domingo-Fernandez R, Johnston DG, Jiang JK, Israelsen WJ, Keane J, Thomas C, Clish C, Vander Heiden M, Xavier RJ, O’Neill LA (2015) Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab 21:65–80. https://doi.org/10.1016/j.cmet.2014.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Raichlin E, Edwards BS, Kremers WK, Clavell AL, Rodeheffer RJ, Frantz RP, Pereira NL, Daly RC, McGregor CG, Lerman A, Kushwaha SS (2009) Acute cellular rejection and the subsequent development of allograft vasculopathy after cardiac transplantation. J Heart Lung Transplant 28:320–327. https://doi.org/10.1016/j.healun.2009.01.006

    Article  PubMed  Google Scholar 

  36. Ratliff ML, Garton J, Garman L, Barron MD, Georgescu C, White KA, Chakravarty E, Wren JD, Montgomery CG, James JA, Webb CF (2019) ARID3a gene profiles are strongly associated with human interferon alpha production. J Autoimmun 96:158–167. https://doi.org/10.1016/j.jaut.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  37. Rosenbaum S, Kreft S, Etich J, Frie C, Stermann J, Grskovic I, Frey B, Mielenz D, Pöschl E, Gaipl U, Paulsson M, Brachvogel B (2011) Identification of novel binding partners (annexins) for the cell death signal phosphatidylserine and definition of their recognition motif. J Biol Chem 286:5708–5716. https://doi.org/10.1074/jbc.M110.193086

    Article  CAS  PubMed  Google Scholar 

  38. Scozzi D, Ibrahim M, Menna C, Krupnick AS, Kreisel D, Gelman AE (2017) The role of neutrophils in transplanted organs. Am J Transplant 17:328–335. https://doi.org/10.1111/ajt.13940

    Article  PubMed  Google Scholar 

  39. Seguín-Estévez Q, De Palma R, Krawczyk M, Leimgruber E, Villard J, Picard C, Tagliamacco A, Abbate G, Gorski J, Nocera A, Reith W (2009) The transcription factor RFX protects MHC class II genes against epigenetic silencing by DNA methylation. J Immunol 183:2545–2553. https://doi.org/10.4049/jimmunol.0900376

    Article  CAS  PubMed  Google Scholar 

  40. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208:1367–1376. https://doi.org/10.1084/jem.20110278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shirakawa K, Endo J, Kataoka M, Katsumata Y, Yoshida N, Yamamoto T, Isobe S, Moriyama H, Goto S, Kitakata H, Hiraide T, Fukuda K, Sano M (2018) IL (interleukin)-10-STAT3-galectin-3 axis is essential for osteopontin-producing reparative macrophage polarization after myocardial infarction. Circulation 138:2021–2035. https://doi.org/10.1161/circulationaha.118.035047

    Article  CAS  PubMed  Google Scholar 

  42. Silvis MJM, Kaffka Genaamd Dengler SE, Odille CA, Mishra M, van der Kaaij NP, Doevendans PA, Sluijter JPG, de Kleijn DPV, de Jager SCA, Bosch L, van Hout GPJ (2020) Damage-associated molecular patterns in myocardial infarction and heart transplantation: the road to translational success. Front Immunol 11:599511. https://doi.org/10.3389/fimmu.2020.599511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Siu JHY, Surendrakumar V, Richards JA, Pettigrew GJ (2018) T cell allorecognition pathways in solid organ transplantation. Front Immunol 9:2548. https://doi.org/10.3389/fimmu.2018.02548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soderlund C, Ohman J, Nilsson J, Higgins T, Kornhall B, Johansson L, Radegran G (2014) Acute cellular rejection the first year after heart transplantation and its impact on survival: a single-centre retrospective study at Skane University Hospital in Lund 1988–2010. Transpl Int 27:482–492. https://doi.org/10.1111/tri.12284

    Article  PubMed  Google Scholar 

  45. Souto-Carneiro MM, Klika KD, Abreu MT, Meyer AP, Saffrich R, Sandhoff R, Jennemann R, Kraus FV, Tykocinski LO, Eckstein V, Carvalho L, Kriegsmann M, Giese T, Lorenz HM, Carvalho RA (2020) Proinflammatory profile of autoimmune CD8(+) T cells relies on increased LDHA activity and aerobic glycolysis. Arthritis Rheumatol. https://doi.org/10.1002/art.41420

    Article  PubMed  Google Scholar 

  46. Stehlik J, Kobashigawa J, Hunt SA, Reichenspurner H, Kirklin JK (2018) Honoring 50 years of clinical heart transplantation in circulation: in-depth state-of-the-art review. Circulation 137:71–87. https://doi.org/10.1161/circulationaha.117.029753

    Article  PubMed  Google Scholar 

  47. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R (2019) Comprehensive integration of single-cell data. Cell 177:1888-1902.e1821. https://doi.org/10.1016/j.cell.2019.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Turrel-Davin F, Tournadre A, Pachot A, Arnaud B, Cazalis MA, Mougin B, Miossec P (2010) FoxO3a involved in neutrophil and T cell survival is overexpressed in rheumatoid blood and synovial tissue. Ann Rheum Dis 69:755–760. https://doi.org/10.1136/ard.2009.109991

    Article  CAS  PubMed  Google Scholar 

  49. Tyrakis PA, Palazon A, Macias D, Lee KL, Phan AT, Veliça P, You J, Chia GS, Sim J, Doedens A, Abelanet A, Evans CE, Griffiths JR, Poellinger L, Goldrath AW, Johnson RS (2016) S-2-hydroxyglutarate regulates CD8(+) T-lymphocyte fate. Nature 540:236–241. https://doi.org/10.1038/nature20165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Webb GJ, Hirschfield GM, Lane PJ (2016) OX40, OX40L and autoimmunity: a comprehensive review. Clin Rev Allergy Immunol 50:312–332. https://doi.org/10.1007/s12016-015-8498-3

    Article  CAS  PubMed  Google Scholar 

  51. Weber BN, Kobashigawa JA, Givertz MM (2017) Evolving areas in heart transplantation. JACC Heart Fail 5:869–878. https://doi.org/10.1016/j.jchf.2017.10.009

    Article  PubMed  Google Scholar 

  52. Wolock SL, Lopez R, Klein AM (2019) Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst 8:281-291.e289. https://doi.org/10.1016/j.cels.2018.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu B, Wang Y, Wang C, Wang GG, Wu J, Wan YY (2016) BPTF is essential for T cell homeostasis and function. J Immunol 197:4325–4333. https://doi.org/10.4049/jimmunol.1600642

    Article  CAS  PubMed  Google Scholar 

  54. Xu C, Zhang C, Ji J, Wang C, Yang J, Geng B, Zhao T, Zhou H, Mu X, Pan J, Hu S, Lv Y, Chen X, Wen H, You Q (2018) CD36 deficiency attenuates immune-mediated hepatitis in mice by modulating the proapoptotic ef. Hepatology (Baltimore, MD) 67:1943–1955. https://doi.org/10.1002/hep.29716

    Article  CAS  Google Scholar 

  55. Xu T, Stewart KM, Wang X, Liu K, Xie M, Ryu JK, Li K, Ma T, Wang H, Ni L, Zhu S, Cao N, Zhu D, Zhang Y, Akassoglou K, Dong C, Driggers EM, Ding S (2017) Metabolic control of T(H)17 and induced T(reg) cell balance by an epigenetic mechanism. Nature 548:228–233. https://doi.org/10.1038/nature23475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zahra K, Dey T, Ashish MSP, Pandey U (2020) Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis. Front Oncol 10:159. https://doi.org/10.3389/fonc.2020.00159

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, Triem S, Klug M, Schunk SJ, Schmit D, Kramann R, Körbel C, Ampofo E, Laschke MW, Selejan S-R, Paschen A, Herter T, Schuster S, Silbernagel G, Sester M, Sester U, Aßmann G, Bals R, Kostner G, Jahnen-Dechent W, Menger MD, Rohrer L, März W, Böhm M, Jankowski J, Kopf M, Latz E, Niemeyer BA, Fliser D, Laufs U, Speer T (2020) Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol 21:30–41. https://doi.org/10.1038/s41590-019-0548-1

    Article  CAS  PubMed  Google Scholar 

  58. Zhang X, Han S, Kang Y, Guo M, Hong S, Liu F, Fu S, Wang L, Wang QX (2012) SAHA, an HDAC inhibitor, synergizes with tacrolimus to prevent murine cardiac allograft rejection. Cell Mol Immunol 9:390–398. https://doi.org/10.1038/cmi.2012.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhu B, Zhang R, Li C, Jiang L, Xiang M, Ye Z, Kita H, Melnick AM, Dent AL, Sun J (2019) BCL6 modulates tissue neutrophil survival and exacerbates pulmonary inflammation following influenza virus infection. Proc Natl Acad Sci U S A 116:11888–11893. https://doi.org/10.1073/pnas.1902310116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zou Y, Steurer W, Klima G, Obrist P, Margreiter R, Brandacher G (2002) Estradiol enhances murine cardiac allograft rejection under cyclosporin and can be antagonized by the antiestrogen tamoxifen. Transplantation 74:354–357. https://doi.org/10.1097/00007890-200208150-00010

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Fund for Distinguished Young Scholars of China (82125004; to JPS) and the National Natural Science Fund for General Program of China (81670376; to JPS).

Author information

Authors and Affiliations

Authors

Contributions

JPS designed and supervised the study. YC, YQH and XMH performed scRNA-seq. QC performed HTX experiments. XJL was responsible for the analysis of scRNA-seq data. XC, XXF, MHT participated in sample collection and processing. YC and XJL wrote the manuscript draft. JPS and SSH revised the manuscript. All authors read and approved the manuscript. YC, XJL, QC, and YQH contributed equally to this work.

Corresponding author

Correspondence to Jiangping Song.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

The use of human tissue in the present study was approved by the Human Ethics Committee of Fuwai Hospital, Chinese Academy of Medical Sciences (no. 2013-049). Written informed consent was obtained from each patient. This study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 71258 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Li, X., Cheng, Q. et al. Single-cell transcriptomic identified HIF1A as a target for attenuating acute rejection after heart transplantation. Basic Res Cardiol 116, 64 (2021). https://doi.org/10.1007/s00395-021-00904-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-021-00904-5

Keywords

Navigation