Skip to main content

Advertisement

Log in

Regulatory T cells ameliorate cardiac remodeling after myocardial infarction

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Persistent inflammatory responses participate in the pathogenesis of adverse ventricular remodeling after myocardial infarction (MI). We hypothesized that regulatory T (Treg) cells modulate inflammatory responses, attenuate ventricular remodeling and subsequently improve cardiac function after MI. Acute MI was induced by ligation of the left anterior descending coronary artery in rats. Infiltration of Foxp3+ Treg cells was detected in the infarcted heart. Expansion of Treg cells in vivo by means of adoptive transfer as well as a CD28 superagonistic antibody (JJ316) resulted in an increased number of Foxp3+ Treg cells in the infarcted heart. Subsequently, rats with MI showed improved cardiac function following Treg cells transfer or JJ316 injection. Interstitial fibrosis, myocardial matrix metalloproteinase-2 activity and cardiac apoptosis were attenuated in the rats that received Treg cells transfer. Infiltration of neutrophils, macrophages and lymphocytes as well as expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β were also significantly decreased, and the CD8+ cardiac-specific cytotoxic T lymphocyte response was inhibited. Expression of interleukin (IL)-10 in the heart, however, was increased. Additional studies in vitro indicated that Treg cells directly protect neonatal rat cardiomyocytes against LPS-induced apoptosis, and this protection depends on the cell–cell contact and IL-10 expression. Furthermore, Treg cells inhibited proinflammatory cytokines production by cardiomyocytes. These data demonstrate that Treg cells serve to protect against adverse ventricular remodeling and contribute to improve cardiac function after myocardial infarction via inhibition of inflammation and direct protection of cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbate A, Biondi-Zoccai GG, Baldi A (2002) Pathophysiologic role of myocardial apoptosis in post-infarction left ventricular remodeling. J Cell Physiol 193(2):145–153. doi:10.1002/jcp.10174

    Article  PubMed  CAS  Google Scholar 

  2. Belosjorow S, Bolle I, Duschin A, Heusch G, Schulz R (2003) TNF-alpha antibodies are as effective as ischemic preconditioning in reducing infarct size in rabbits. Am J Physiol Heart Circ Physiol 284:H927–H930. doi:10.1152/ajpheart.00374.2002

    PubMed  CAS  Google Scholar 

  3. Beyersdorf N, Gaupp S, Balbach K, Schmidt J, Toyka KV, Lin CH, Hanke T, Hunig T, Kerkau T, Gold R (2005) Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis. J Exp Med 202(3):445–455. doi:10.1084/jem.20051060

    Article  PubMed  CAS  Google Scholar 

  4. Bour-Jordan H, Bluestone JA (2009) Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol Rev 229:41–66. doi:10.1111/j.1600-065X.2009.00775.x

    Article  PubMed  CAS  Google Scholar 

  5. Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A, Frangogiannis NG (2008) Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol 173(1):57–67. doi:10.2353/ajpath.2008.070974

    Article  PubMed  Google Scholar 

  6. Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74(2):184–195. doi:10.1016/j.cardiores.2006.10.002

    Article  PubMed  CAS  Google Scholar 

  7. Chao W (2009) Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. Am J Physiol Heart Circ Physiol 296(1):H1–H12. doi:10.1152/ajpheart.00995.2008

    Article  PubMed  CAS  Google Scholar 

  8. Chaput N, Darrasse-Jeze G, Bergot AS, Cordier C, Ngo-Abdalla S, Klatzmann D, Azogui O (2007) Regulatory T cells prevent CD8 T cell maturation by inhibiting CD4 Th cells at tumor sites. J Immunol 179(8):4969–4978

    PubMed  CAS  Google Scholar 

  9. Dobaczewski M, Xia Y, Bujak M, Gonzalez-Quesada C, Frangogiannis NG (2010) CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am J Pathol 176(5):2177–2187. doi:10.2353/ajpath.2010.090759

    Article  PubMed  CAS  Google Scholar 

  10. Doesch AO, Mueller S, Nelles M, Konstandin M, Celik S, Frankenstein L, Goeser S, Kaya Z, Koch A, Zugck C, Katus HA (2011) Impact of troponin I-autoantibodies in chronic dilated and ischemic cardiomyopathy. Basic Res Cardiol 106:25–35. doi:10.1007/s00395-010-0126-z

    Article  PubMed  CAS  Google Scholar 

  11. Dorge H, Schulz R, Belosjorow S, Post H, van de Sand A, Konietzka I, Frede S, Hartung T, Vinten-Johansen J, Youker KA, Entman ML, Erbel R, Heusch G (2002) Coronary microembolization: the role of TNF-alpha in contractile dysfunction. J Mol Cell Cardiol 34:51–62. doi:10.1006/jmcc.2001.1489

    Article  PubMed  Google Scholar 

  12. Dungen HD, Platzeck M, Vollert J, Searle J, Muller C, Reiche J, Mehrhof F, Muller R, Mockel M (2010) Autoantibodies against cardiac troponin I in patients with congestive heart failure. Eur J Heart Fail 12(7):668–675. doi:10.1093/eurjhf/hfq088

    Article  PubMed  Google Scholar 

  13. Fernandez MA, Puttur FK, Wang YM, Howden W, Alexander SI, Jones CA (2008) T regulatory cells contribute to the attenuated primary CD8 + and CD4 + T cell responses to herpes simplex virus type 2 in neonatal mice. J Immunol 180(3):1556–1564

    PubMed  CAS  Google Scholar 

  14. Felix SB (2011) Editorial on the manuscript entitled “Impact of troponin I-autoantibodies in chronic dilated and ischemic cardiomyopathy” by Andreas O. Doesch and co-workers. Basic Res Cardiol 106:1–4. doi:10.1007/s00395-010-0140-1

    Article  PubMed  Google Scholar 

  15. Frangogiannis NG (2006) Targeting the inflammatory response in healing myocardial infarcts. Curr Med Chem 13(16):1877–1893. doi:10.2174/092986706777585086

    Article  PubMed  CAS  Google Scholar 

  16. Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58(2):88–111. doi:10.1016/j.phrs.2008.06.007

    Article  PubMed  CAS  Google Scholar 

  17. Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53(1):31–47. doi:10.1016/S0008-6363(01)00434-5

    Article  PubMed  CAS  Google Scholar 

  18. Frantz S, Bauersachs J, Ertl G (2009) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81(3):474–481. doi:10.1093/cvr/cvn292

    Article  PubMed  CAS  Google Scholar 

  19. Frantz S, Kobzik L, Kim YD, Fukazawa R, Medzhitov R, Lee RT, Kelly RA (1999) Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 104(3):271–280. doi:10.1172/JCI6709

    Article  PubMed  CAS  Google Scholar 

  20. Gullestad L, Kjekshus J, Damas JK, Ueland T, Yndestad A, Aukrust P (2005) Agents targeting inflammation in heart failure. Expert Opin Investig Drugs 14(5):557–566. doi:10.1517/13543784.14.5.557

    Article  PubMed  CAS  Google Scholar 

  21. Hammoud L, Lu X, Lei M, Feng Q (2011) Deficiency in TIMP-3 increases cardiac rupture and mortality post-myocardial infarction via EGFR signaling: beneficial effects of cetuximab. Basic Res Cardiol 106:459–471. doi:10.1007/s00395-010-0147-7

    Article  PubMed  CAS  Google Scholar 

  22. Haudek SB, Taffet GE, Schneider MD, Mann DL (2007) TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest 117(9):2692–2701. doi:10.1172/JCI29134

    Article  PubMed  CAS  Google Scholar 

  23. Higgins SC, Lavelle EC, McCann C, Keogh B, McNeela E, Byrne P, O’Gorman B, Jarnicki A, McGuirk P, Mills KH (2003) Toll-like receptor 4-mediated innate IL-10 activates antigen-specific regulatory T cells and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology. J Immunol 171(6):3119–3127

    PubMed  CAS  Google Scholar 

  24. Hori S, Carvalho TL, Demengeot J (2002) CD25+CD4+ regulatory T cells suppress CD4+ T cell-mediated pulmonary hyperinflammation driven by Pneumocystis carinii in immunodeficient mice. Eur J Immunol 32(5):1282–1291. doi:10.1002/1521-4141(200205)32:5<1282:AID-IMMU1282>3.0.CO;2-#

    Article  PubMed  CAS  Google Scholar 

  25. Janicki JS, Brower GL, Gardner JD, Chancey AL, Stewart JA Jr (2004) The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling. Heart Fail Rev 9(1):33–42. doi:10.1023/B:HREV.0000011392.03037.7e

    Article  PubMed  CAS  Google Scholar 

  26. Jankowski M, Bissonauth V, Gao L, Gangal M, Wang D, Danalache B, Wang Y, Stoyanova E, Cloutier G, Blaise G, Gutkowska J (2010) Anti-inflammatory effect of oxytocin in rat myocardial infarction. Basic Res Cardiol 105(2):205–218. doi:10.1007/s00395-009-0076-5

    Article  PubMed  CAS  Google Scholar 

  27. Kaikita K, Hayasaki T, Okuma T, Kuziel WA, Ogawa H, Takeya M (2004) Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am J Pathol 165(2):439–447. doi:10.1016/S0002-9440(10)63309-3

    Article  PubMed  CAS  Google Scholar 

  28. Kendal AR, Waldmann H (2010) Infectious tolerance: therapeutic potential. Curr Opin Immunol 22:560–565. doi:10.1016/j.coi.2010.08.002

    Article  PubMed  CAS  Google Scholar 

  29. Klein L, Khazaie K, von Boehmer H (2003) In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc Natl Acad Sci USA 100(15):8886–8891. doi:10.1073/pnas.1533365100

    Google Scholar 

  30. Kleinbongard P, Schulz R, Heusch G (2011) TNFalpha in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 16:49–69. doi:10.1007/s10741-010-9180-8

    Article  PubMed  CAS  Google Scholar 

  31. Krishnamurthy P, Lambers E, Verma S, Thorne T, Qin G, Losordo DW, Kishore R (2010) Myocardial knockdown of mRNA-stabilizing protein HuR attenuates post-MI inflammatory response and left ventricular dysfunction in IL-10-null mice. FASEB J 24(7):2484–2494. doi:fj.10.1096/fj.09-149815

    Article  PubMed  CAS  Google Scholar 

  32. Krishnamurthy P, Rajasingh J, Lambers E, Qin G, Losordo DW, Kishore R (2009) IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res 104(2):e9–e18. doi:10.1161/CIRCRESAHA.108.188243

    Article  PubMed  CAS  Google Scholar 

  33. Krzeminski TF, Nozynski JK, Grzyb J, Porc M (2008) Wide-spread myocardial remodeling after acute myocardial infarction in rat. Features for heart failure progression. Vascul Pharmacol 48(2-3):100–108. doi:10.1016/j.vph.2008.01.002

    Article  PubMed  CAS  Google Scholar 

  34. Lambert JM, Lopez EF, Lindsey ML (2008) Macrophage roles following myocardial infarction. Int J Cardiol 130:147–158. doi:10.1016/j.ijcard.2008.04.059

    Article  PubMed  Google Scholar 

  35. Leuschner F, Li J, Goser S, Reinhardt L, Ottl R, Bride P, Zehelein J, Pfitzer G, Remppis A, Giannitsis E, Katus HA, Kaya Z (2008) Absence of auto-antibodies against cardiac troponin I predicts improvement of left ventricular function after acute myocardial infarction. Eur Heart J 29(16):1949–1955. doi:10.1093/eurheartj/ehn268

    Article  PubMed  Google Scholar 

  36. Li B, Liao YH, Cheng X, Ge H, Guo H, Wang M (2006) Effects of carvedilol on cardiac cytokines expression and remodeling in rat with acute myocardial infarction. Int J Cardiol 111(2):247–255. doi:10.1016/j.ijcard.2005.08.065

    Article  PubMed  Google Scholar 

  37. Liao YH, Cheng X (2006) Autoimmunity in myocardial infarction. Int J Cardiol 112(1):21–26. doi:10.1016/j.ijcard.2006.05.009

    Article  PubMed  Google Scholar 

  38. Liu G, Ma H, Qiu L, Li L, Cao Y, Ma J, Zhao Y (2011) Phenotypic and functional switch of macrophages induced by regulatory CD4+CD25+T cells in mice. Immunol Cell Biol 89:130–142. doi:10.1038/icb.2010.70

    Article  PubMed  CAS  Google Scholar 

  39. Maisel A, Cesario D, Baird S, Rehman J, Haghighi P, Carter S (1998) Experimental autoimmune myocarditis produced by adoptive transfer of splenocytes after myocardial infarction. Circ Res 82(4):458–463

    PubMed  CAS  Google Scholar 

  40. Makita S, Kanai T, Nemoto Y, Totsuka T, Okamoto R, Tsuchiya K, Yamamoto M, Kiyono H, Watanabe M (2007) Intestinal lamina propria retaining CD4 + CD25 + regulatory T cells is a suppressive site of intestinal inflammation. J Immunol 178(8):4937–4946

    PubMed  CAS  Google Scholar 

  41. Masteller EL, Warner MR, Tang Q, Tarbell KV, McDevitt H, Bluestone JA (2005) Expansion of functional endogenous antigen-specific CD4+CD25+ regulatory T cells from nonobese diabetic mice. J Immunol 175(5):3053–3059

    PubMed  CAS  Google Scholar 

  42. Nian M, Lee P, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94(12):1543–1553. doi:10.1161/01.RES.0000130526.2085.4.fa

    Article  PubMed  CAS  Google Scholar 

  43. Oie E, Ahmed MS, Ueland T, Sikkeland LI, Dahl CP, Hagelin EM, von Lueder T, Edvardsen T, Andreassen AK, Gullestad L, Aukrust P, Yndestad A, Vinge LE, Attramadal H (2010) Adrenomedullin is increased in alveolar macrophages and released from the lungs into the circulation in severe heart failure. Basic Res Cardiol 105:89–98. doi:10.1007/s00395-009-0070-y

    Article  PubMed  CAS  Google Scholar 

  44. Onai Y, Suzuki J, Maejima Y, Haraguchi G, Muto S, Itai A, Isobe M (2007) Inhibition of NF-{kappa}B improves left ventricular remodeling and cardiac dysfunction after myocardial infarction. Am J Physiol Heart Circ Physiol 292(1):H530–H538. doi:10.1152/ajpheart.0054.9.2006

    Article  PubMed  CAS  Google Scholar 

  45. Pang H, Liao Y, Wang Z, Dong J, Lu Q (2000) Effect of anti-cardiac myosin antibody on prognosis of patients with acute myocardial infarction. J Tongji Med Univ 20(1):46–48

    Article  PubMed  CAS  Google Scholar 

  46. Richards H, Williams A, Jones E, Hindley J, Godkin A, Simon AK, Gallimore A (2010) Novel role of regulatory T cells in limiting early neutrophil responses in skin. Immunology 131:583–592. doi:10.1111/j.1365-2567.2010.03333.x

    Article  PubMed  CAS  Google Scholar 

  47. Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 107:12204–12209. doi:10.1073/pnas.0909122107

    Google Scholar 

  48. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, Shimizu J, Takahashi T, Nomura T (2006) Foxp3+ CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212:8–27. doi:10.1111/j.0105-2896.2006.00427.x

    Article  PubMed  CAS  Google Scholar 

  49. Simpson P, Savion S (1982) Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circ Res 50(1):101–116

    PubMed  CAS  Google Scholar 

  50. Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146. doi:10.1161/01.RES.0000255031.15793.86

    Article  PubMed  CAS  Google Scholar 

  51. Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90:520–530. doi:10.1161/01.RES.0000013290.12884.A3

    Article  PubMed  CAS  Google Scholar 

  52. Suffia I, Reckling SK, Salay G, Belkaid Y (2005) A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J Immunol 174(9):5444–5455

    PubMed  CAS  Google Scholar 

  53. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355:1018–1028. doi:10.1056/NEJMoa063842

    Article  PubMed  CAS  Google Scholar 

  54. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101(25):2981–2988

    PubMed  CAS  Google Scholar 

  55. Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, Masteller EL, McDevitt H, Bonyhadi M, Bluestone JA (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199(11):1455–1465. doi:10.1084/jem.20040139

    Article  PubMed  CAS  Google Scholar 

  56. Tang TT, Ding YJ, Liao YH, Yu X, Xiao H, Xie JJ, Yuan J, Zhou ZH, Liao MY, Yao R, Cheng Y, Cheng X (2010) Defective circulating CD4CD25+ Foxp3+ CD127 (low) regulatory T-cells in patients with chronic heart failure. Cell Physiol Biochem 25(4–5):451–458. doi:10.1159/000303050

    Article  PubMed  CAS  Google Scholar 

  57. Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM (2004) CD25+CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199(11):1467–1477. doi:10.1084/jem.20040180

    Article  PubMed  CAS  Google Scholar 

  58. Tonkin DR, Haskins K (2009) Regulatory T cells enter the pancreas during suppression of type 1 diabetes and inhibit effector T cells and macrophages in a TGF-beta-dependent manner. Eur J Immunol 39:1313–1322. doi:10.1002/eji.200838916

    Article  PubMed  CAS  Google Scholar 

  59. Varda-Bloom N, Leor J, Ohad DG, Hasin Y, Amar M, Fixler R, Battler A, Eldar M, Hasin D (2000) Cytotoxic T lymphocytes are activated following myocardial infarction and can recognize and kill healthy myocytes in vitro. J Mol Cell Cardiol 32(12):2141–2149. doi:10.1006/jmcc.2000.1261

    Article  PubMed  CAS  Google Scholar 

  60. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532. doi:10.1038/nri2343

    Article  PubMed  CAS  Google Scholar 

  61. Voigt A, Bartel K, Egerer K, Trimpert C, Feist E, Gericke C, Kandolf R, Klingel K, Kuckelkorn U, Stangl K, Felix SB, Baumann G, Kloetzel PM, Staudt A (2010) Humoral anti-proteasomal autoimmunity in dilated cardiomyopathy. Basic Res Cardiol 105:9–18. doi:10.1007/s00395-009-0061-z

    Article  PubMed  CAS  Google Scholar 

  62. Voigt A, Trimpert C, Bartel K, Egerer K, Kuckelkorn U, Feist E, Gericke C, Klingel K, Kandolf R, Felix SB, Baumann G, Kloetzel PM, Stangl K, Staudt A (2010) Lack of evidence for a pathogenic role of proteasome-directed autoimmunity in dilated cardiomyopathy. Basic Res Cardiol 105:557–567. doi:10.1007/s00395-010-0096-1

    Article  PubMed  CAS  Google Scholar 

  63. Walcher D, Vasic D, Heinz P, Bach H, Durst R, Hausauer A, Hombach V, Marx N (2010) LXR activation inhibits chemokine-induced CD4-positive lymphocyte migration. Basic Res Cardiol 105:487–494. doi:10.1007/s00395-010-0092-5

    Article  PubMed  CAS  Google Scholar 

  64. Wei L (2011) Immunological aspect of cardiac remodeling: T lymphocyte subsets in inflammation-mediated cardiac fibrosis. Exp Mol Pathol 90:74–78. doi:10.1016/j.yexmp.2010.10.004

    Article  PubMed  CAS  Google Scholar 

  65. Wei S, Kryczek I, Zou W (2006) Regulatory T-cell compartmentalization and trafficking. Blood 108(2):426–431. doi:10.1182/blood-2006-01-0177

    Article  PubMed  CAS  Google Scholar 

  66. Wright G, Singh IS, Hasday JD, Farrance IK, Hall G, Cross AS, Rogers TB (2002) Endotoxin stress-response in cardiomyocytes: NF-kappaB activation and tumor necrosis factor-alpha expression. Am J Physiol Heart Circ Physiol 282(3):H872–H879. doi:10.1152/ajpheart.00256.2001

    PubMed  CAS  Google Scholar 

  67. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM (2006) Attenuation of CD8(+) T-cell function by CD4(+)CD25(+) regulatory T cells in B-cell non-Hodgkin’s lymphoma. Cancer Res 66(20):10145–10152. doi:10.1158/0008-5472.CAN-06-1822

    Article  PubMed  CAS  Google Scholar 

  68. Zhang J, Cheng X, Liao YH, Lu B, Yang Y, Li B, Ge H, Wang M, Liu Y, Guo Z, Zhang L (2005) Simvastatin regulates myocardial cytokine expression and improves ventricular remodeling in rats after acute myocardial infarction. Cardiovasc Drugs Ther 19(1):13–21. doi:10.1007/s10557-005-6893-3

    Article  PubMed  CAS  Google Scholar 

  69. Zymek P, Nah DY, Bujak M, Ren G, Koerting A, Leucker T, Huebener P, Taffet G, Entman M, Frangogiannis NG (2007) Interleukin-10 is not a critical regulator of infarct healing and left ventricular remodeling. Cardiovasc Res 74(2):313–322. doi:10.1016/j.cardiores.2006.11.028

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Basic Research Program of China (973 Program: 2012CB517805 and 2007CB512005 to YHL and XC), National Natural Science Foundation of China (No. 81170303 and 30871067 to XC; 81070106 to XT) and Program for New Century Excellent Talents in University of China (NCET-09-0380 to XC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Hua Liao or Xiang Cheng.

Additional information

T.-T. Tang and J. Yuan contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, TT., Yuan, J., Zhu, ZF. et al. Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res Cardiol 107, 232 (2012). https://doi.org/10.1007/s00395-011-0232-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-011-0232-6

Keywords

Navigation