Skip to main content
Log in

Salicylic Acid: A Phenolic Molecule with Multiple Roles in Salt-Stressed Plants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Salicylic acid (SA) has multiple functions in plants, either under optimal or environmental stress conditions. In salt-stressed plants, SA in coordination with other plant hormones (e.g., auxins, abscisic acid, gibberellins) and other signaling molecules can take part to the finely tuned regulatory network, to promote the stimulation of plant defenses aimed at counteracting the salt-triggered harmful effects. This review summarizes the most updated literature dealing with the roles of SA in salt-stressed plants with the aim to provide a comprehensive picture about physiological, biochemical and molecular mechanisms mediated by SA during salt stress, to highlight the possible beneficial effect of SA supplementation and to orientate the direction of future research on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu ME, Munne-Bosch S (2009) Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J Exp Bot 60(4):1261–1271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1):18

    Google Scholar 

  • Aghaeifard F, Babalar M, Fallahi E, Ahmadi A (2016) Influence of humic acid and salicylic acid on yield, fruit quality, and leaf mineral elements of strawberry (Fragaria × Ananassa duch.) cv. Camarosa. J Plant Nutr 39(13):1821–1829. https://doi.org/10.1080/01904167.2015.1088023

    Article  CAS  Google Scholar 

  • Aghdam MS, Asghari M, Babalar M, Sarcheshmeh MAA (2016) Impact of salicylic acid on postharvest physiology of fruits and vegetables. Eco-friendly technology for postharvest produce quality. Elsevier, pp 243–268

    Google Scholar 

  • Agtuca B, Rieger E, Hilger K, Song L, Robert CA, Erb M, Karve A, Ferrieri RA (2014) Carbon-11 reveals opposing roles of auxin and salicylic acid in regulating leaf physiology, leaf metabolism, and resource allocation patterns that impact root growth in Zea mays. J Plant Growth Regul 33(2):328–339

    CAS  Google Scholar 

  • Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P (2020) Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules 10(1):42

    CAS  Google Scholar 

  • Ahmad N, Mukhtar Z (2017) Genetic manipulations in crops: challenges and opportunities. Genomics 109(5):494–505. https://doi.org/10.1016/j.ygeno.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  • Ahmad F, Singh A, Kamal A (2019) Salicylic acid–mediated defense mechanisms to abiotic stress tolerance. Plant signaling molecules. Woodhead Publishing, pp 355–369

    Google Scholar 

  • Ahmed W, Imran M, Yaseen M, ul Haq T, Jamshaid MU, Rukh S, Ikram RM, Ali M, Ali A, Maqbool M (2020) Role of salicylic acid in regulating ethylene and physiological characteristics for alleviating salinity stress on germination, growth and yield of sweet pepper. PeerJ 8:e8475

    PubMed  PubMed Central  Google Scholar 

  • Ahammed GJ, Li CX, Li X, Liu A, Chen S, Zhou J (2021) Overexpression of tomato RING E3 ubiquitin ligase gene SlRING1 confers cadmium tolerance by attenuating cadmium accumulation and oxidative stress. Physiol Plant 173(1):449–459

    CAS  PubMed  Google Scholar 

  • Ahammed GJ, Li X, Yu J, Shi K (2015) NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana. Plant Signal Behav 10(6):e1011944

    PubMed  PubMed Central  Google Scholar 

  • Ahammed GJ, Li Y, Li X, Han WY, Chen S (2018) Epigallocatechin-3-gallate alleviates salinity-retarded seed germination and oxidative stress in tomato. J Plant Growth Regul 37(4):1349–1356

    CAS  Google Scholar 

  • Alamri SA, Siddiqui MH, Al-Khaishani MY, Ali HM (2018) Response of salicylic acid on seed germination and physio-biochemical changes of wheat under salt stress. Acta Sci Agric 2(5):36–42

    Google Scholar 

  • Ali MB, Hahn E-J, Paek K-Y (2007) Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules 12(3):607–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150(3):1335–1344. https://doi.org/10.1104/pp.109.139352

    Article  PubMed  PubMed Central  Google Scholar 

  • Alsahli A, Mohamed A-K, Alaraidh I, Al-Ghamdi A, Al-Watban A, El-Zaidy M, Alzahrani SM (2019) Salicylic acid alleviates salinity stress through the modulation of biochemical attributes and some key antioxidants in wheat seedlings. Pak J Bot 51(5):1551–1559

    CAS  Google Scholar 

  • Amaral DOJd, Lima MMdA, Resende LV, Silva MVd (2008) Differential gene expression, induced by salicylic acid and Fusarium oxysporum f. sp. lycopersici infection, in tomato. Pesqui Agropecu Bras 43(8):1017–1023

    Google Scholar 

  • Amirjani MR (2010) Effect of NaCl on some physiological parameters of rice. Eur J Biol Sci 3(1):6–16

    Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53(6):412–428. https://doi.org/10.1111/j.1744-7909.2011.01043.x

    Article  CAS  PubMed  Google Scholar 

  • An C, Mou Z (2014) Salicylic acid and defense responses in plants. Phytohormones: a window to metabolism signaling and biotechnological applications. Springer, New York, pp 191–219

    Google Scholar 

  • Anjum NA, Aref IM, Duarte AC, Pereira E, Ahmad I, Iqbal M (2014) Glutathione and proline can coordinately make plants withstand the joint attack of metal(loid) and salinity stresses. Front Plant Sci 5:662. https://doi.org/10.3389/fpls.2014.00662

    Article  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164(6):685–694. https://doi.org/10.1016/j.jplph.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  • Arif H, Aggarwal S (2020) Salicylic Acid (Aspirin). In: StatPearls. StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC, Treasure Island

  • Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S (2020) Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment. Environ Exp Bot 175:104040

    CAS  Google Scholar 

  • Asensi-Fabado MA, Munné-Bosch S (2011) The aba3-1 mutant of Arabidopsis thaliana withstands moderate doses of salt stress by modulating leaf growth and salicylic acid levels. J Plant Growth Regul 30(4):456–466

    CAS  Google Scholar 

  • Asghari M, Aghdam MS (2010) Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends Food Sci Tech 21(10):502–509

    CAS  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29(3):162–190. https://doi.org/10.1080/07352689.2010.483580

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    CAS  Google Scholar 

  • Babaei S, Niknam V, Behmanesh M (2020) Comparative effects of Nitric Oxide and salicylic acid on salinity tolerance in saffron (Crocus sativus). Plant Biosyst an International Journal Dealing with all Aspects of Plant Biology:1–10

  • Backer R, Mahomed W, Reeksting BJ, Engelbrecht J, Ibarra-Laclette E, van den Berg N (2015) Phylogenetic and expression analysis of the NPR1-like gene family from Persea americana (Mill.). Front Plant Sci 6:300. https://doi.org/10.3389/fpls.2015.00300

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahrani A, Pourreza J (2012) Gibberellic acid and salicylic acid effects on seed germination and seedlings growth of wheat (Triticum aestivum L.) under salt stress condition. World Appl Sci J 18(5):633–641

    CAS  Google Scholar 

  • Bastam N, Baninasab B, Ghobadi C (2013) Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regul 69(3):275–284. https://doi.org/10.1007/s10725-012-9770-7

    Article  CAS  Google Scholar 

  • Batista VCV, Pereira IMC, de Oliveira P-M, Canuto KM, Pereira RdCA, Rodrigues THS, de Menezes DD, Gomes-Filho E, de Carvalho HH (2019) Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscosa. Environ Exp Bot 167:103870

    CAS  Google Scholar 

  • Belt K, Huang S, Thatcher LF, Casarotto H, Singh KB, Van Aken O, Millar AH (2017) Salicylic acid-dependent plant stress signaling via mitochondrial succinate dehydrogenase. Plant Physiol 173(4):2029–2040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126(3):1024–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breen S, Williams SJ, Outram M, Kobe B, Solomon PS (2017) Emerging insights into the functions of pathogenesis-related protein 1. Trends Plant Sci 22(10):871–879

    CAS  PubMed  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65(5):1241–1257. https://doi.org/10.1093/jxb/ert430

    Article  CAS  PubMed  Google Scholar 

  • Caarls L, Pieterse CM, Van Wees SC (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170. https://doi.org/10.3389/fpls.2015.00170

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit med25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24(7):2898. https://doi.org/10.1105/tpc.112.098277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Sign Behav 4(6):493–496. https://doi.org/10.4161/psb.4.6.8392

    Article  CAS  Google Scholar 

  • Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109(11):5868–5923. https://doi.org/10.1021/cr900182s

    Article  CAS  PubMed  Google Scholar 

  • Clarke D, Williams S, Jahiruddin M, Parks K, Salehin M (2015) Projections of on-farm salinity in coastal Bangladesh. Environ Sci Process Impacts 17(6):1127–1136. https://doi.org/10.1039/c4em00682h

    Article  CAS  PubMed  Google Scholar 

  • Cleland CF, Ajami A (1974) Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiol 54(6):904–906. https://doi.org/10.1104/pp.54.6.904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217(Pt 1):67–75. https://doi.org/10.1242/jeb.089938

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11(1):1–14

    Google Scholar 

  • Csiszár J, Brunner S, Horváth E, Bela K, Ködmön P, Riyazuddin R, Gallé Á, Hurton Á, Papdi C, Szabados L (2018) Exogenously applied salicylic acid maintains redox homeostasis in salt-stressed Arabidopsis gr1 mutants expressing cytosolic roGFP1. Plant Growth Regul 86(2):181–194

    Google Scholar 

  • Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S, Tari I (2014) Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem: PPB 78:15–26. https://doi.org/10.1016/j.plaphy.2014.02.010

    Article  CAS  PubMed  Google Scholar 

  • Cui W, Fang P, Zhu K, Mao Y, Gao C, Xie Y, Wang J, Shen W (2014) Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. Ecotoxicol Environ Saf 105:103–111. https://doi.org/10.1016/j.ecoenv.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Ann Rev Plant Biol 61:651–679

    CAS  Google Scholar 

  • Custers JH, Harrison SJ, Sela-Buurlage MB, Van Deventer E, Lageweg W, Howe PW, Van Der Meijs PJ, Ponstein AS, Simons BH, Melchers LS, Stuiver MH (2004) Isolation and characterisation of a class of carbohydrate oxidases from higher plants, with a role in active defence. Plant J 39(2):147–160

    CAS  PubMed  Google Scholar 

  • Dabi M, Agarwal P, Agarwal PK (2019) Functional validation of JcWRKY2, a group III transcription factor toward mitigating salinity stress in transgenic tobacco. DNA Cell Biol 38(11):1278–1291

    CAS  PubMed  Google Scholar 

  • de Azevedo Neto AD, Prisco JT, Enéas-Filho J, de Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56(1):87–94

    Google Scholar 

  • Deng X, Zhou S, Hu W, Feng J, Zhang F, Chen L, Huang C, Luo Q, He Y, Yang G (2013) Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiol Plant 149(3):367–377

    CAS  PubMed  Google Scholar 

  • Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15(9):2181–2191. https://doi.org/10.1105/tpc.012849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dezar CA, Giacomelli JI, Manavella PA, Ré DA, Alves-Ferreira M, Baldwin IT, Bonaventure G, Chan RL (2011) HAHB10, a sunflower HD-Zip II transcription factor, participates in the induction of flowering and in the control of phytohormone-mediated responses to biotic stress. J Exp Bot 62(3):1061–1076

    CAS  PubMed  Google Scholar 

  • Ding Y, Sheng J, Li S, Nie Y, Zhao J, Zhu Z, Wang Z, Tang X (2015) The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Tec 101:88–95

    CAS  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151. https://doi.org/10.1186/1471-2229-10-151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dokhanieh AY, Aghdam MS, Fard JR, Hassanpour H (2013) Postharvest salicylic acid treatment enhances antioxidant potential of cornelian cherry fruit. Sci Hortic 154:31–36

    CAS  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51(1):21–37. https://doi.org/10.1023/A:1020780022549

    Article  CAS  PubMed  Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99(5):787–822. https://doi.org/10.1093/aob/mcl255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esim N, Atici Ö (2015) Effects of exogenous nitric oxide and salicylic acid on chilling-induced oxidative stress in wheat (Triticum aestivum). Front Life Sci 8:124–130

    CAS  Google Scholar 

  • Espanany A, Fallah S (2016) Seed germination of dill (Anethum graveolens L.) in response to salicylic acid and halopriming under cadmium stress. Iran J Plant Physiol 6(3):1701–1713. https://doi.org/10.22034/ijpp.2016.532675

    Article  Google Scholar 

  • Fakhimi F, Azar A, Nahandi F, Bashir N, Gohari G (2020) Effect of salicylic acid on betaine aldehyde dehydrogenase gene expression in potato (Solanum tuberosum L., Cv. Agria) under salinity stress. Environ Stresses Crop Sci 13 (1)

  • Fan X, Mattheis JP, Fellman JK (1996) Inhibition of apple fruit 1-aminocyclopropane-1-carboxylic acid oxidase activity and respiration by acetylsalicylic acid. J Plant Physiol 149(3):469–471. https://doi.org/10.1016/S0176-1617(96)80151-9

    Article  CAS  Google Scholar 

  • Fancy NN, Bahlmann AK, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant, Cell Environ 40(4):462–472. https://doi.org/10.1111/pce.12707

    Article  CAS  PubMed  Google Scholar 

  • FAO (2009) High level expert forum—how to feed the world in 2050. Rome, Italy: Economic and Social Development, Food and Agricultural Organization of the United Nations.

  • Fayez KA, Bazaid SA (2014) Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 13(1):45–55

    Google Scholar 

  • Fiol DF, Sanmarti E, Sacchi R, Kültz D (2009) A novel tilapia prolactin receptor is functionally distinct from its paralog. J Exp Bot 212(13):2007–2015

    CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    CAS  PubMed  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486(7402):228–232. https://doi.org/10.1038/nature11162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadzovska-Simic S, Tusevski O, Antevski S, Atanasova-Pancevska N, Petreska J, Stefova M, Kungulovski D, Spasenoski M (2012) Secondary metabolite production in Hypericum perforatum L. cell suspensions upon elicitation with fungal mycelia from Aspergillus flavus. Arch Biol Sci 64(1):113–121. https://doi.org/10.2298/ABS1201113G

    Article  Google Scholar 

  • Gémes K, Poór P, Horváth E, Kolbert Z, Szopkó D, Szepesi A, Tari I (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol Plant 142(2):179–192. https://doi.org/10.1111/j.1399-3054.2011.01461.x

    Article  CAS  PubMed  Google Scholar 

  • Gerami M, Mohammadian A, Akbarpour V (2019) The Effect of putrescine and salicylic acid on physiological characteristics and antioxidant in Stevia Rebaudiana B: under salinity stress (بررسیاثرپوترسینواسیدسالیسیلیکبربرخیازخصوصیاتفیزیولوژیکیوآنتی‌اکسیدانیگیاهاستویا(Stevia rebaudiana B.) درشرایطشوری). J Crop Breed 11(29):40–54. https://doi.org/10.29252/jcb.11.29.40

    Article  Google Scholar 

  • Ghafari H, Tadayon M (2019) The effect of salicylic acid and proline foliar application on some physiological characteristics of soybeen (Glycin max L.) under irrigation by saline water. J Plant Proc Func 8(29):125–138

    Google Scholar 

  • Ghassemi-Golezani K, Farhangi-Abriz S, Bandehagh A (2018) Salicylic acid and jasmonic acid alter physiological performance, assimilate mobilization and seed filling of soybean under salt stress. Acta Agric Slov 111(3):597–607

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem: PPB 48(12):909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Artus NN, Thomashow MF (1992) cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol 18(1):13–21. https://doi.org/10.1007/bf00018452

    Article  CAS  PubMed  Google Scholar 

  • Golkar P, Taghizadeh M, Yousefian Z (2019) The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell Tissue Organ Cult 137(3):575–585

    CAS  Google Scholar 

  • Grattan SR, Oster JD, Benes SE, Kaffka SR (2009) Use of saline drainage waters for irrigation. In Agricultural salinity assessment and management, Wallender, WW, Tanji, KK, Eds, 687–719.

  • Guleria S, Sohal B, Mann A (2005) Salicylic acid treatment and/or Erysiphe polygoni inoculation on phenylalanine ammonia-lyase and peroxidase content and accumulation of phenolics in pea leaves. J Veg Sci 11(2):71–79

    Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164(6):728–736

    CAS  PubMed  Google Scholar 

  • Haghighi M, Mansouri F (2019) Effect of Jasmonic acid and Salicylic acid on growth and physiological changes of tomato under salinity stress. J Sci Technol Greenhouse Culture-Isfahan Univ Technol 9(4):1–14

    Google Scholar 

  • Hamada A (2001) Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rostlinna Vyroba-UZPI

    Google Scholar 

  • Han C, Yang P (2015) Studies on the molecular mechanisms of seed germination. Proteomics 15(10):1671–1679

    CAS  PubMed  Google Scholar 

  • Handa N, Kohli SK, Kaur R, Khanna K, Bakshi P, Thukral AK, Bhardwaj R (2017) Emerging trends in physiological and biochemical responses of salicylic acid. Salicylic acid: a multifaceted hormone. Springer, Singapore, pp 47–75

    Google Scholar 

  • Hao F, Zhao S, Dong H, Zhang H, Sun L, Miao C (2010) Nia1 and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure in Arabidopsis. J Integr Plant Biol 52(3):298–307. https://doi.org/10.1111/j.1744-7909.2010.00920.x

    Article  CAS  PubMed  Google Scholar 

  • Hao L, Zhao Y, Jin D, Zhang L, Bi X, Chen H, Xu Q, Ma C, Li G (2012) Salicylic acid-altering Arabidopsis mutants response to salt stress. Plant Soil 354(1):81–95. https://doi.org/10.1007/s11104-011-1046-x

    Article  CAS  Google Scholar 

  • Harfouche AL, Rugini E, Mencarelli F, Botondi R, Muleo R (2008) Salicylic acid induces H2O2 production and endochitinase gene expression but not ethylene biosynthesis in Castanea sativa in vitro model system. J Plant Physiol 165(7):734–744. https://doi.org/10.1016/j.jplph.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68(1):14–25. https://doi.org/10.1016/j.envexpbot.2009.08.005

    Article  CAS  Google Scholar 

  • Hayat S, Ali B, Ahmad A (2007) Salicylic acid: biosynthesis, metabolism and physiological role in plants. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone. Springer, Netherlands, Dordrecht, pp 1–14

    Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444(1):11–25

    CAS  PubMed  Google Scholar 

  • Herrera-Vásquez A, Salinas P, Holuigue L (2015) Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci 6:171. https://doi.org/10.3389/fpls.2015.00171

    Article  PubMed  PubMed Central  Google Scholar 

  • Hettiarachchi GH, Reddy MK, Sopory SK, Chattopadhyay S (2005) Regulation of TOP2 by various abiotic stresses including cold and salinity in pea and transgenic tobacco plants. Plant Cell Physiol 46(7):1154–1160. https://doi.org/10.1093/pcp/pci114

    Article  CAS  PubMed  Google Scholar 

  • Hoffman GJ, Shalhevet J (2007) Controlling Salinity. Design and operation of farm irrigation systems, 2nd edn. American Society of Agricultural and Biological Engineers, pp 160–207

    Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179(1):33–54

    CAS  PubMed  Google Scholar 

  • Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68(6):1361–1369. https://doi.org/10.1093/jxb/erx004

    Article  CAS  PubMed  Google Scholar 

  • Huang WY, Cai YZ, Zhang Y (2010) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62(1):1–20. https://doi.org/10.1080/01635580903191585

    Article  CAS  PubMed  Google Scholar 

  • Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agric Food Secur 7(1):44

    Google Scholar 

  • Hussain S, Shaukat M, Ashraf M, Zhu C, Jin Q, Zhang J (2019) Salinity stress in arid and semi-arid climates: effects and management in field crops. In Climate change and agriculture. IntechOpen. https://doi.org/10.5772/intechopen.87982

  • Iglesias MJ, Terrile MC, Casalongué CA (2011) Auxin and salicylic acid signalings counteract the regulation of adaptive responses to stress. Plant Signal Behav 6(3):452–454. https://doi.org/10.4161/psb.6.3.14676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imran H, Zhang Y, Du G, Wang G, Zhang J (2007) Effect of salicylic acid (SA) on delaying fruit senescence of Huang Kum pear. Front Agric China 1(4):456–459. https://doi.org/10.1007/s11703-007-0075-y

    Article  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42. https://doi.org/10.1016/j.envexpbot.2013.12.006

    Article  CAS  Google Scholar 

  • Irchhaiya R, Kumar A, Yadav A, Gupta N, Kumar S, Gupta N, Kumar S, Yadav V, Prakash A, Gurjar H (2015) Metabolites in plants and its classification. World J Pharm Pharma Sci 4(1):287–305

    CAS  Google Scholar 

  • Janda T, Szalai G, Pál M (2020) Salicylic acid signalling in plants. Int J Mol Sci 21(7):2655

    PubMed  PubMed Central  Google Scholar 

  • Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208(2):175–180. https://doi.org/10.1007/s004250050547

    Article  CAS  Google Scholar 

  • Jang CS, Lee HJ, Chang SJ, Seo YW (2004) Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat (Triticum aestivum L.). Plant Sci 167(5):995–1001

    CAS  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12(1):50–55. https://doi.org/10.1038/embor.2010.186

    Article  CAS  PubMed  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64(8):2255–2268. https://doi.org/10.1093/jxb/ert085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015a) Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul 76(1):25–40. https://doi.org/10.1007/s10725-015-0028-z

    Article  CAS  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Shabala S, Massart A, Poschenrieder C, Rengel Z (2015b) The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis. J Exp Bot 66(7):1865–1875. https://doi.org/10.1093/jxb/eru528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant responses to stresses. J Integ Plant Biol 59(2):86–101

    CAS  Google Scholar 

  • Jovel J, Walker M, Sanfaçon H (2011) Salicylic acid-dependent restriction of Tomato ringspot virus spread in tobacco is accompanied by a hypersensitive response, local RNA silencing, and moderate systemic resistance. Mol Plant-Microbe Interact: MPMI 24(6):706–718. https://doi.org/10.1094/mpmi-09-10-0224

    Article  CAS  PubMed  Google Scholar 

  • Ju Y-l, Yue X-f, Min Z, Wang X-h, Fang Y-l, Zhang J-x (2020) VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem: PPB 146:98–111

    CAS  PubMed  Google Scholar 

  • Kang G, Li G, Guo T (2014) Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiol Plant 36(9):2287–2297

    CAS  Google Scholar 

  • Kang J, Hwang J-U, Lee M, Kim Y-Y, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci 107(5):2355–2360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karami Chame S, Khalil-Tahmasbi B, ShahMahmoodi P, Abdollahi A, Fathi A, Seyed Mousavi SJ, Hossein Abadi M, Ghoreishi S, Bahamin S (2016) Effects of salinity stress, salicylic acid and Pseudomonas on the physiological characteristics and yield of seed beans (Phaseolus vulgaris). Sci Agri 14(2):234–238

    Google Scholar 

  • Kaur A, Pati PK, Pati AM, Nagpal AK (2020) Physico-chemical characterization and topological analysis of pathogenesis-related proteins from Arabidopsis thaliana and Oryza sativa using in-silico approaches. PLoS ONE 15(9):e0239836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020) The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiol Biochem: PPB 147:10–20

    CAS  PubMed  Google Scholar 

  • Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T (2010) Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci Hortic 126:402–407

    CAS  Google Scholar 

  • Khan MI, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem: PPB 80:67–74. https://doi.org/10.1016/j.plaphy.2014.03.026

    Article  CAS  PubMed  Google Scholar 

  • Khan MI, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8(11):e26374. https://doi.org/10.4161/psb.26374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MS, Akther T, Ali DM, Hemalatha S (2019) An investigation on the role of salicylic acid alleviate the saline stress in rice crop (Oryza sativa (L)). Biocatal Agric Biotechnol 18:101027

    Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160(5):485–492. https://doi.org/10.1078/0176-1617-00865

    Article  CAS  PubMed  Google Scholar 

  • Khodary SEA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int J Agric Biol 6(1):5–8

    CAS  Google Scholar 

  • Khokon AR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant, Cell Environ 34(3):434–443. https://doi.org/10.1111/j.1365-3040.2010.02253.x

    Article  CAS  PubMed  Google Scholar 

  • Khurana JP, Cleland CF (1992) Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain, Lemna paucicostata LP6. Plant Physiol 100(3):1541–1546. https://doi.org/10.1104/pp.100.3.1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Mun B-G, Khan AL, Waqas M, Kim H-H, Shahzad R, Imran M, Yun B-W, Lee I-J (2018) Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS ONE 13(3):e0192650

    PubMed  PubMed Central  Google Scholar 

  • Kong J, Dong Y, Xu L, Liu S, Bai X (2014) Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Bot Stud 55:9. https://doi.org/10.1186/1999-3110-55-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovácik J, Klejdus B, Hedbavny J, Backor M (2009) Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology (london, England) 18(5):544–554. https://doi.org/10.1007/s10646-009-0312-7

    Article  CAS  PubMed  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165(9):920–931. https://doi.org/10.1016/j.jplph.2006.11.014

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Han JH, Kim Y-C, Lee YH, Hong JK, Lee S (2019) Transgenic Arabidopsis plants expressing CsBCATs affect seed germination under abiotic stress conditions. Plant Biotechnol Rep 13(1):95–101. https://doi.org/10.1007/s11816-019-00515-6

    Article  CAS  Google Scholar 

  • Lefevere H, Bauters L, Gheysen G (2020) Salicylic acid biosynthesis in plants. Front Plant Sci 11:338

    PubMed  PubMed Central  Google Scholar 

  • Leslie CA, Romani RJ (1988) Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol 88(3):833–837. https://doi.org/10.1104/pp.88.3.833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang L, Ahammed GJ, Li YT, Wei JP, Yan P et al (2019) Salicylic acid acts upstream of nitric oxide in elevated carbon dioxide-induced flavonoid biosynthesis in tea plant (Camellia sinensis L.). Environ Exp Bot 161:367–374

    CAS  Google Scholar 

  • Li G, Peng X, Wei L, Kang G (2013) Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529(2):321–325. https://doi.org/10.1016/j.gene.2013.07.093

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16(2):319–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Parsons BL, Liu D, Mattoo AK (1992) Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Mol Biol 18(3):477–487. https://doi.org/10.1007/BF00040664

    Article  CAS  PubMed  Google Scholar 

  • Li T, Hu Y, Du X, Tang H, Shen C, Wu J (2014) Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS ONE 9(10):e109492. https://doi.org/10.1371/journal.pone.0109492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Yu J, Peng Y, Huang B (2017) Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Physiol Plant 159(1):42–58

    CAS  PubMed  Google Scholar 

  • Lin P-C, Hwang S-G, Endo A, Okamoto M, Koshiba T, Cheng W-H (2007) Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiol 143(2):745–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litvinovskaya R, Vayner A, Zhylitskaya H, Kolupaev YE, Savachka A, Khripach V (2016) Synthesis and stress-protective action on plants of Brassinosteroid conjugates with salicylic acid. Chem Nat Compd 52:452–457

    CAS  Google Scholar 

  • Liu J, Li L, Yuan F, Chen M (2019) Exogenous salicylic acid improves the germination of Limonium bicolor seeds under salt stress. Plant Signal Behav 14(10):e1644595

    PubMed  PubMed Central  Google Scholar 

  • Liu N, Song F, Zhu X, You J, Yang Z, Li X (2017) Salicylic acid alleviates aluminum toxicity in soybean roots through modulation of reactive oxygen species metabolism. Front Chem 5:96. https://doi.org/10.3389/fchem.2017.00096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Yin L, Deng X, Wang S, Tanaka K, Zhang S (2014) Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J Exp Bot 65(17):4747–4756. https://doi.org/10.1093/jxb/eru220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luciński R, Misztal L, Samardakiewicz S, Jackowski G (2011) The thylakoid protease Deg2 is involved in stress-related degradation of the photosystem II light-harvesting protein Lhcb6 in Arabidopsis thaliana. New Phytol 192(1):74–86

    PubMed  Google Scholar 

  • Kafi M, Khan MA (2008) Crop and forage production using saline waters. Daya Books

    Google Scholar 

  • Ma X, Zheng J, Zhang X, Hu Q, Qian R (2017) Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front Plant Sci 8:600. https://doi.org/10.3389/fpls.2017.00600

    Article  PubMed  PubMed Central  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30(5):595–618. https://doi.org/10.1007/s11738-008-0173-3

    Article  CAS  Google Scholar 

  • Manohar M, Wang D, Manosalva PM, Choi HW, Kombrink E, Klessig DF (2017) Members of the abscisic acid co-receptor PP2C protein family mediate salicylic acid-abscisic acid crosstalk. Plant Direct 1(5):e00020. https://doi.org/10.1002/pld3.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet M-F, Regad F, Cailleteau B, Hamdi S (2007) Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot 58(8):1999–2010

    CAS  PubMed  Google Scholar 

  • Martín-Mex R, Villanueva-Couoh E, Herrera-Campos T, Larqué-Saavedra A (2005) Positive effect of salicylates on the flowering of African violet. Sci Hortic 103(4):499–502. https://doi.org/10.1016/j.scienta.2004.06.020

    Article  CAS  Google Scholar 

  • Martínez C, Pons E, Prats G, León J (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37(2):209–217. https://doi.org/10.1046/j.1365-313X.2003.01954.x

    Article  CAS  PubMed  Google Scholar 

  • Mass E (1986) Salt tolerance of plants. Appl Agric Res 1:12–26

    Google Scholar 

  • Menke FL, Kang HG, Chen Z, Park JM, Kumar D, Klessig DF (2005) Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol Plant-Microbe Interact: MPMI 18(10):1027–1034. https://doi.org/10.1094/mpmi-18-1027

    Article  CAS  PubMed  Google Scholar 

  • Métraux JP (2002) Recent breakthroughs in the study of salicylic acid biosynthesis. Trend Plant Sci 7:332–334

    Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19(3):819–830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misra N, Saxena P (2009) Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 177(3):181–189

    CAS  Google Scholar 

  • Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci 106(13):5418–5423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73(1):91–104. https://doi.org/10.1111/tpj.12014

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5(4):4. https://doi.org/10.3389/fpls.2014.00004

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadi M, Chaichi MR, Safikhani S (2019) Salicylic acid application alleviates the salt stress effects in wheat. Int J Dev Res 9(01):24976–24981

    Google Scholar 

  • More P, Agarwal P, Joshi PS, Agarwal PK (2019) The JcWRKY tobacco transgenics showed improved photosynthetic efficiency and wax accumulation during salinity. Sci Rep 9(1):1–14

    Google Scholar 

  • Moreau M, Tian M, Klessig DF (2012) Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Res 22(12):1631–1633. https://doi.org/10.1038/cr.2012.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morsi M, Abdelmigid H, Aljoudi N (2018) Exogenous salicylic acid ameliorates the adverse effects of salt stress on antioxidant system in Rosmarinus officinalis L. Egypt J Bot 58(2):249–263

    Google Scholar 

  • Muneer S, Park YG, Manivannan A, Soundararajan P, Jeong BR (2014) Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. Int J Mol Sci 15(12):21803–21824. https://doi.org/10.3390/ijms151221803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munir M, Amjad M, Ziaf K, Ahmad A (2016) Improving okra productivity by mitigating drought through foliar application of salicylic acid. Pak J Agri Sci 53(4):879–884

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Naser Alavi SM, Arvin MJ, Manoochehri Kalantari K (2014) Salicylic acid and nitric oxide alleviate osmotic stress in wheat (Triticum aestivum L) seedlings. J Plant Interact 9(1):683–688

    Google Scholar 

  • Nawrath C, Métraux JP (1999) Salicylic acid induction–deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11(8):1393–1404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrath C, Heck S, Parinthawong N, Métraux JP (2002) EDS5, an essential component of salicylic acid–dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14(1):275–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Syeed S, Khan NA (2011) Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot 70(2–3):80–87

    CAS  Google Scholar 

  • Nazar R, Umar S, Khan NA (2015) Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal Behav 10(3):e1003751–e1003751. https://doi.org/10.1080/15592324.2014.1003751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissen P (1994) Stimulation of somatic embryogenesis in carrot by ethylene: effects of modulators of ethylene biosynthesis and action. Physiol Plantarum 92:397–403

    CAS  Google Scholar 

  • Niu Y, Xiang Y (2018) An overview of biomembrane functions in plant responses to high-temperature stress. Front Plant Sci 9:915

    PubMed  PubMed Central  Google Scholar 

  • Nongpiur RC, Singla-Pareek SL, Pareek A (2016) Genomics approaches for improving salinity stress tolerance in crop plants. Curr Genomics 17:343–357. https://doi.org/10.2174/1389202917666160331202517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noreen S, Siddiq A, Hussain K, Ahmad S, Hasanuzzaman M (2017) Foliar application of salicylic acid with salinity stress on physiological and biochemical attributes of sunflower (Helianthus annuus L) CROP. Acta Sci Pol Hortorum Cultus 16(2):57–74

    Google Scholar 

  • Odat N (2018) Molecular and biochemical responses of barley (Hordeum vulgare L) to NaCl salinity stress and salicylic acid. Res Crop 19(1):101–106

    Google Scholar 

  • Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B (2015) Growth-regulating factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant 8(7):998–1010

    CAS  PubMed  Google Scholar 

  • Oraei M, Gohari G, Panahirad S, Zareei E, Zaare-Nahandi F (2019) Effect of salicylic acid foliar application on Vitis vinifera L. cv. ‘sultana’under salinity stress. Acta Sci Pol Hortorum Cultus. https://doi.org/10.24326/asphc.2019.2.15

    Article  Google Scholar 

  • Oraghi Ardebili N, Iranbakhsh A, Oraghi Ardebili Z (2019) Efficiency of selenium and salicylic acid protection against salinity in soybean. Plant Physiol 9(2):2727–2738

    Google Scholar 

  • Pacheco AC, Cabral CDS, Fermino ESS, Aleman CC (2013) Salicylic acid-induced changes to growth, flowering and flavonoids production in marigold plants. J Med Plant Res 1:95–100

    Google Scholar 

  • Palma F, López-Gómez M, Tejera NA, Lluch C (2013) Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci 208:75–82. https://doi.org/10.1016/j.plantsci.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Groot EP, Kazantsev FV, Teale W, Omelyanchuk N, Kovrizhnykh V, Palme K, Mironova VV (2019) Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiol 180(3):1725–1739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira LS, Duarte E, Fragoso R (2014) Water use: recycling and desalination for agriculture. Encyclopedia Agric Food Syst 5:407–424

    Google Scholar 

  • Pérez-Llorca M, Muñoz P, Müller M, Munné-Bosch S (2019) Biosynthesis, metabolism and function of auxin, salicylic acid and melatonin in climacteric and non-climacteric fruits. Front Plant Sci 10:136

    PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055

    Article  CAS  PubMed  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. Salinity: environment-plants-molecules. Springer, Dordrecht, pp 3–20

    Google Scholar 

  • Pizolato Neto A, Alves RdC, Camargos AEV, Gratão PL, Carregari SMR, Zingaretti SM, Santos DMMD (2020) Pretreatment of forage legumes under moderate salinity with exogenous salicylic acid or spermidine. Acta Sci, Agron. https://doi.org/10.4025/actasciagron.v42i1.42809

    Article  Google Scholar 

  • Pokotylo I, Kravets V, Ruelland E (2019) Salicylic acid binding proteins (SABPs): the hidden forefront of salicylic acid signalling. Int J Mol Sci 20(18):4377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poursakhi N, Razmjoo J, Karimmojeni H (2019) Interactive effect of salinity stress and foliar application of salicylic acid on some physiochemical traits of chicory (Cichorium intybus L) genotypes. Sci Hortic 258:108810

    CAS  Google Scholar 

  • Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate-and jasmonate-dependent signaling. Mol Plant-Microbe Interactions: MPMI 20(5):492–499

    CAS  PubMed  Google Scholar 

  • Quilis J, Peñas G, Messeguer J, Brugidou C, San Segundo B (2008) The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol Plant-Microbe Interactions: MPMI 21(9):1215–1231. https://doi.org/10.1094/mpmi-21-9-1215

    Article  CAS  PubMed  Google Scholar 

  • Rai KK, Pandey N, Rai SP (2020) Salicylic acid and nitric oxide signaling in plant heat stress. Physiol Plant 168(2):241–255. https://doi.org/10.1111/ppl.12958

    Article  CAS  PubMed  Google Scholar 

  • Rajabi Dehnavi A, Zahedi M, Razmjoo J, Eshghizadeh H (2019) Effect of exogenous application of salicylic acid on salt-stressed sorghum growth and nutrient contents. J Plant Nutr 42(11–12):1333–1349

    CAS  Google Scholar 

  • Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 4:458–475

    Google Scholar 

  • Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141(3):910–923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramel F, Birtic S, Cuiné S, Triantaphylidès C, Ravanat JL, Havaux M (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158(3):1267–1278. https://doi.org/10.1104/pp.111.182394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17(6):603–614. https://doi.org/10.1046/j.1365-313X.1999.00400.x

    Article  CAS  PubMed  Google Scholar 

  • Rao S, Du C, Li A, Xia X, Yin W, Chen J (2019) Salicylic acid alleviated salt damage of Populus euphratica: a physiological and transcriptomic analysis. Forests 10(5):423

    Google Scholar 

  • Raskin I (1990) Salicylic acid levels in thermogenic and non-thermogenic plants. Ann Bot 66(4):369–373. https://doi.org/10.1093/oxfordjournals.aob.a088037

    Article  CAS  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annual Rev Plant Biol 43(1):439–463. https://doi.org/10.1146/annurev.pp.43.060192.002255

    Article  CAS  Google Scholar 

  • Rattan A, Kapoor D, Kapoor N, Bhardwaj R, Sharma A (2020) Brassinosteroids regulate functional components of antioxidative defense system in salt stressed maize seedlings. J Plant Growth Regul 39:1–11

    Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62(10):3321–3338. https://doi.org/10.1093/jxb/err031

    Article  CAS  PubMed  Google Scholar 

  • Rubio V, Bustos R, Irigoyen ML, Cardona-López X, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69(4):361–373. https://doi.org/10.1007/s11103-008-9380-y

    Article  CAS  PubMed  Google Scholar 

  • Sabzmeydani E, Sedaghathoor S, Hashemabadi D (2020) Salinity response of Kentucky bluegrass (Poa pratensis L) as influenced by salicylic acid and progesterone. Rev Chapingo Ser Hortic 26(1):49–63

    Google Scholar 

  • Samadi S, Habibi G, Vaziri A (2019) Effects of exogenous salicylic acid on antioxidative responses, phenolic metabolism and photochemical activity of strawberry under salt stress. Plant Physiol 9(2):2685–2694

    Google Scholar 

  • Saraf R, Saingar S, Chaudhary S, Chakraborty D (2018) Response of plants to salinity stress and the role of salicylic acid in modulating tolerance mechanisms: physiological and proteomic approach. Biotic and abiotic stress tolerance in plants. Springer, Singapore, pp 103–136

    Google Scholar 

  • Sayyari M, Babalar M, Kalantari S, Serrano M, Valero D (2009) Effect of salicylic acid treatment on reducing chilling injury in stored pomegranates. Postharvest Biol Tec 53(3):152–154

    CAS  Google Scholar 

  • Schaller GE (2012) Ethylene and the regulation of plant development. BMC Biol 10(1):9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segonzac C, Monaghan J (2019) Modulation of plant innate immune signaling by small peptides. Curr Opi Plant Biol 51:22–28

    CAS  Google Scholar 

  • Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant-Microbe Interact: MPMI 10(1):69–78. https://doi.org/10.1094/mpmi.1997.10.1.69

    Article  CAS  PubMed  Google Scholar 

  • Shahmoradi H, Naderi D (2018) Improving effects of salicylic acid on morphological, physiological and biochemical responses of salt-imposed winter jasmine. Int J Hortic Sci Technol 5(2):219–230

    CAS  Google Scholar 

  • Shaikh-Abol-hasani F, Roshandel P (2019) Effects of priming with salicylic acid on germination traits of Dracocephalum moldavica L under salinity stress. Plant Physiol 10(1):3035–3045

    Google Scholar 

  • Shaki F, Maboud HE, Niknam V (2018) Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid. Curr Plant Biol 13:16–22. https://doi.org/10.1016/j.cpb.2018.04.001

    Article  Google Scholar 

  • Shaki F, Maboud HE, Niknam V (2019) Effects of salicylic acid on hormonal cross talk, fatty acids profile, and ions homeostasis from salt-stressed safflower. J Plant Interact 14(1):340–346

    CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164(3):317–322. https://doi.org/10.1016/S0168-9452(02)00415-6

    Article  CAS  Google Scholar 

  • Shama MA, Moussa SA, El Fadel NIA (2016) Salicylic acid efficacy on resistance of garlic plants (Allium sativum, L.) to water salinity stress on growth, yield and its quality. Alex Sci Exch J 37:165–174

    Google Scholar 

  • Sharma M, Gupta SK, Majumder B, Maurya VK, Deeba F, Alam A, Pandey V (2017) Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. J Proteomics 163:28–51. https://doi.org/10.1016/j.jprot.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7):285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kapoor D, Wang J, Landi M, Zheng B, Yan D, Yuan H (2020a) Nitric oxide mediated mechanisms adopted by plants to cope with salinity. Biol Plant 64:512–518

    CAS  Google Scholar 

  • Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M (2020b) The role of salicylic acid in plants exposed to heavy metals. Molecules 25(3):540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheteiwy MS, An J, Yin M, Jia X, Guan Y, He F, Hu J (2019) Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings. Protoplasma 256(1):79–99. https://doi.org/10.1007/s00709-018-1279-0

    Article  CAS  PubMed  Google Scholar 

  • Shine MB, Yang JW, El-Habbak M, Nagyabhyru P, Fu DQ, Navarre D, Ghabrial S, Kachroo P, Kachroo A (2016) Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytol 212(3):627–636. https://doi.org/10.1111/nph.14078

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131. https://doi.org/10.1016/j.sjbs.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  • Siboza XI, Bertling I, Odindo AO (2014) Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). J Plant Physiol 171(18):1722–1731. https://doi.org/10.1016/j.jplph.2014.05.012

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 1:27–58

    Google Scholar 

  • Solanki MV, Trivedi SK, Kandoliya UK, Golakiya BA (2018) Effect of exogenous application of salicylic acid on biochemical constituent in black gram (Vigna mungo L) Hepper irrigated with saline water. Eur J Biotechnol Biosci 6(5):28–34

    Google Scholar 

  • Soon FF, Ng LM, Zhou XE, West GM, Kovach A., Tan MH et al. (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335:85–88. https://doi.org/10.1126/science.1215106

    Article  CAS  PubMed  Google Scholar 

  • Souri MK, Tohidloo G (2019) Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chem Biol Technol Agric 6(1):26

    CAS  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12(2):89–100. https://doi.org/10.1038/nri3141

    Article  CAS  PubMed  Google Scholar 

  • Srivastava MK, Dwivedi UN (2000) Delayed ripening of banana fruit by salicylic acid. Plant Sci 158(1–2):87–96. https://doi.org/10.1016/s0168-9452(00)00304-6

    Article  CAS  PubMed  Google Scholar 

  • Sultan SM, Mohamed FM, Gamal HA, Mohamed SSE (2016) Growth and yield of cucumber plants derived from seeds pretreated with salicylic acid. J Biol Chem Environ Sci 11(1):541–561

    Google Scholar 

  • Sultan SME, Mohamed MF (2016) Growth and yield of cucumber plants derived from seeds pretreated with salicylic acid. J Boil Chem Environ Sci 11(1):541–561

    Google Scholar 

  • Sun R, Fan H, Gao F, Lin Y, Zhang L, Gong W, Liu L (2012) Crystal structure of Arabidopsis Deg2 protein reveals an internal PDZ ligand locking the hexameric resting state. J Biol Chem 287(44):37564–37569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12(7):301–309

    CAS  PubMed  Google Scholar 

  • Szepesi Á (2005) Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt-and osmotic stress. Acta Biol Szeged 49(1–2):123–125

    Google Scholar 

  • Szepesi Á (2008) Influence of exogenous salicylic acid on antioxidant enzyme activities in the roots of salt stressed tomato plants. Acta Biol Szeged 52(1):199–200

    Google Scholar 

  • Szepesi A, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML, Tari I (2009a) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166(9):914–925. https://doi.org/10.1016/j.jplph.2008.11.012

    Article  CAS  PubMed  Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Biju S, Bhardwaj R (2018) 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiol Biochem 130:69–79

    CAS  PubMed  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61(15):4449–4459. https://doi.org/10.1093/jxb/erq251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrens-Spence MP, Bobokalonova A, Carballo V, Glinkerman CM, Pluskal T, Shen A, Weng JK (2019) PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. Mol Plant 12(12):1577–1586

    CAS  PubMed  Google Scholar 

  • Torun H (2019) Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity. Physiol Plant 165(2):169–182

    CAS  PubMed  Google Scholar 

  • van den Burg HA, Kini RK, Schuurink RC, Takken FL (2010) Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell 22(6):1998–2016. https://doi.org/10.1105/tpc.109.070961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Burg HA, Takken FL (2009) Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci 14(5):286–294. https://doi.org/10.1016/j.tplants.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16(1):86

    PubMed  PubMed Central  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161. https://doi.org/10.3389/fpls.2017.00161

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206. https://doi.org/10.1146/annurev.phyto.050908.135202

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2(11):e123. https://doi.org/10.1371/journal.ppat.0020123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci USA 112(2):613–618. https://doi.org/10.1073/pnas.1423481112

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang C, Zou T, Xu N, Sun X (2017) Comparative transcriptional profiling of Gracilariopsis lemaneiformis in response to salicylic acid-and methyl jasmonate-mediated heat resistance. PLoS ONE 12(5):e0176531

    PubMed  PubMed Central  Google Scholar 

  • Wani AB, Chadar H, Wani AH, Singh S, Upadhyay N (2017) Salicylic acid to decrease plant stress. Environ Chem Lett 15(1):101–123. https://doi.org/10.1007/s10311-016-0584-0

    Article  CAS  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, dit Frey NF, Leung J (2008) An update on abscisic acid signaling in plants and more…. Mol Plant 1(2):198–217

    CAS  PubMed  Google Scholar 

  • Wei Y, Liu G, Chang Y, He C, Shi H (2018) Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava. Mol Plant Pathol 19(10):2209–2220. https://doi.org/10.1111/mpp.12691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QJ (2007) Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Mol Biol 64(3):293–303. https://doi.org/10.1007/s11103-007-9152-0

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Sibicky T, Huang B (2010) Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Plant Cell Rep 29(6):595–615. https://doi.org/10.1007/s00299-010-0847-3

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110(1):249–257. https://doi.org/10.1104/pp.110.1.249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Takeno K (2014) Stress and salicylic acid induce the expression of PnFT2 in the regulation of the stress-induced flowering of Pharbitis nil. J Plant Physiol 171(3–4):205–212. https://doi.org/10.1016/j.jplph.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Kamiya Y, Tp S (2001) Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J 28(4):443–453

    CAS  PubMed  Google Scholar 

  • Yang T, Kong C, Yang L, Gong M, Yang S (2018) Effect of exogenous salicylic acid on the metabolism of proline in Jatropha curcas seedlings under salt stress. Acta Bot Boreal-Occid Sin 38(6):1080–1087

    Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20(6):1678–1692. https://doi.org/10.1105/tpc.107.054296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye WW, Liu JD, Fan BX, Hu QM (1997) The effect of salt on the fibre characteristics in upland cotton. China Cottons 24(3):17–18

    Google Scholar 

  • Yıldırım E, Dursun A (2009) Effect of foliar salicylic acid applications on plant growth and yieldof tomato under greenhouse conditions. Acta Hortic 807:395–400

    Google Scholar 

  • Yokoi S, Bressan R, Hasegawa P (2002) Salt stress tolerance of plants. JIRCAS Working Report, 25–33

  • Youssef SM, Abd Elhady SA, Aref RM, Riad GS (2018) Salicylic acid attenuates the adverse effects of salinity on growth and yield and enhances peroxidase isozymes expression more competently than proline and glycine betaine in cucumber plants. Gesunde Pflanz 70(2):75–90

    CAS  Google Scholar 

  • Yu L, Liu Y, Zhu F, Geng X, Yang Y, He Z, Xu F (2020) The enhancement of salt stress tolerance by salicylic acid pretreatment in Arabidopsis thaliana. Biol Plant 64:150–158

    CAS  Google Scholar 

  • Yuan Z, Cong G, Zhang J (2014) Effects of exogenous salicylic acid on polysaccharides production of Dendrobium officinale. S Afr J Bot 95:78–84

    CAS  Google Scholar 

  • Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q, Ahmad A (2008) Effect of salicylic acid on salinity-induced changes in Brassica juncea. J Integr Plant Biol 50(9):1096–1102. https://doi.org/10.1111/j.1744-7909.2008.00697.x

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Hayat S, Alyemeni MN, Fariduddin Q, Ahmad A (2013) Salicylic acid: physiological roles in plants. In: Hayat S et al (eds) Salicylic acid. Springer, Dordrecht, pp 15–30

    Google Scholar 

  • Zarei B, Fazeli A, Tahmasebi ZJJoPP, Function, (2019) Salicylic acid in reducing effect of salinity on some growth parameters of Black cumin (Nigella sativa). J Plant Proc Func 8(29):287–298

    Google Scholar 

  • Zhang Y (2003) The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biol Tec 28(1):67–74. https://doi.org/10.1016/S0925-5214(02)00172-2

    Article  CAS  Google Scholar 

  • Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, He Z (2007) Dual regulation role of GH3. 5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145(2):450–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XY, Wang JG, Song SJ, Wang Q, Kang H, Zhang Y, Li S (2016) Precocious leaf senescence by functional loss of PROTEIN S-ACYL TRANSFERASE14 involves the NPR1-dependent salicylic acid signaling. Sci Rep 6:20309. https://doi.org/10.1038/srep20309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Ma X, Zhang X, Hu Q, Qian R (2018) Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L (Caryophyllaceae) grown under different salt stress conditions. Physiol Mol Biol Plants 24(2):231–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7(1):1–13

    Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    CAS  PubMed  Google Scholar 

  • Zribi I, Ghorbel M, Brini F (2020) Pathogenesis related proteins (PRs): from cellular mechanisms to plant defense. Curr Protein Peptide Sci. https://doi.org/10.2174/1389203721999201231212736

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by National Key Research and Development Program of China (2018YFD1000604); the Key Project of Zhejiang Provincial Natural Science Foundation (LZ18C160001); the National Natural Science Foundation of China (31,901,346, 31,971,695); and the Overseas Expertise Introduction Project for Discipline Innovation (111 Project D18008).

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in writing the initial draft. AS, ML and BZ revised the initial draft.

Corresponding authors

Correspondence to Anket Sharma, Marco Landi or Bingsong Zheng.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Handling Editor: Parvaiz Ahmad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Kohli, S.K., Khanna, K. et al. Salicylic Acid: A Phenolic Molecule with Multiple Roles in Salt-Stressed Plants. J Plant Growth Regul 42, 4581–4605 (2023). https://doi.org/10.1007/s00344-022-10902-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10902-z

Keywords

Navigation