Skip to main content
Log in

Quasistatic Hypoplasticity at Large Strains Eulerian

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The isothermal quasistatic (i.e. acceleration neglected) hardening-free plasticity at large strains is considered, based on the standard multiplicative decomposition of the total strain and the isochoric plastic distortion. The Eulerian velocity-strain formulation is used. The mass density evolves too, but acts only via the force term with a given external acceleration. This rather standard model is then re-formulated in terms of rates (so-called hypoplasticity), and the plastic distortion is completely eliminated, although it can be a-posteriori re-constructed. Involving gradient theories for dissipation, existence and regularity of weak solutions is proved rather constructively by a suitable regularization combined with a Galerkin approximation. The local non-interpenetration through a blowup of stored energy when elastic-strain determinant approaches zero is enforced and exploited. The plasticity is considered rate dependent and, as a special case, also creep in Jeffreys’ viscoelastic rheology in the shear is covered, while the volumetric response obeys the Kelvin–Voigt rheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Báthory, M., Bulíček, M., Málek, J.: Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion. Adv. Nonlinear Anal. 10, 501–521 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Bellout, H., Bloom, F., Nečas, J.: Phenomenological behavior of multipolar viscous fluids. Qarterly Appl. Math. 1, 559–583 (1992)

    MathSciNet  MATH  Google Scholar 

  • Bellout, H., Nečas, J., Rajagopal, K.R.: On the existence and uniqueness of flows multipolar fluids of grade 3 and their stability. Intl. J. Engr. Sci. 37, 75–96 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Benešová, B., Forster, J., Liu, C., Schlömerkemper, A.: Existence of weak solutions to an evolutionary model for magnetoelasticity. SIAM J. Math. Anal. 50, 1200–1236 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Bennett, K.C., Regueiro, R.A., Borja, R.I.: Finite strain elastoplasticity considering the Eshelby stress for materials undergoing plastic volume change. Intl. J. Plast. 77, 214–245 (2016)

    Article  Google Scholar 

  • Bertram, A.: Elasticity and plasticity of large deformations, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Besseling, J.F., van der Giessen, E.: Mathematical modelling of inelastic deformation. Chapman & Hall, London (1994)

    Book  MATH  Google Scholar 

  • Brenner, H.: Kinematics of volume transport. Physica A 349, 11–59 (2005)

    Article  Google Scholar 

  • Bulíček, M., Feireisl, E., Málek, J.: On a class of compressible viscoelastic rate-type fluids with stress-diffusion. Nonlinearity 32, 4665–4681 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Bulíček, M., Málek J., Pr\(\overset{\circ }{{\rm u}}\)ša V., Süli, E.: PDE analysis of a class of thermo-dynamically compatible viscoelastic rate-type fluids with stress-diffusion. In R. Danchin et al., editor, Mathematical Analysis in Fluid Mechanics, volume 710 of Contemp. Math., pages 25–51. Amer. Math. Soc. (2018)

  • Cleja-Tigoiu, S., Maugin, G.A.: Eshelby’s stress tensors in finite elastoplasticity. Acta Mechanica 139, 231–249 (2000)

    Article  MATH  Google Scholar 

  • Dafalias, Y.F.: The plastic spin concept and a simple illustration of its role in finite plastic transformations. Mech. Mater. 3, 223–233 (1984)

    Article  Google Scholar 

  • Dafalias, Y.F.: Bounding surface plasticity. I Mathematical foundation and hypoplasticity. J. Eng. Mech. 112, 966–987 (1986)

  • Davoli, E., Roubíček, T., Stefanelli, U.: A note about hardening-free viscoelastic models in Maxwellian-type rheologies. Math. Mech. of Solids 26, 1483–1497 (2021)

    Article  MathSciNet  Google Scholar 

  • Eckart, C.: The thermodynamics of irreversible processes IV. The theory of elasticity and anelasticity. Phys. Rev. 73, 373–382 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  • Eiter, T., Hopf, K., Mielke, A.: Leray-Hopf solutions to a viscoelastic fluid model with nonsmooth stress-strain relation. Nonlin. Anal., Real World Appl. (to appear). (2021) arXiv:2104.05545

  • Epstein, M., Maugin, G.A.: Remarks on the universality of the Eshelby stress. Math. Mech. Solids 15(1), 137–143 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Feireisl, E.: Dynamics of viscous compressible fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  • Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids. Birkhäuser, Basel (2000)

    MATH  Google Scholar 

  • Fried, E., Gurtin, M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-lenght scales. Arch. Ration. Mech. Anal. 182, 513–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Grandi, D., Stefanelli, U.: Finite plasticity in \(P^\top \!P\). Part I: constitutive model. Cont. Mech. Thermodynamics 29, 97–116 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E., Anand, L.: The decomposition \({{\mathbf{F}}}={{\mathbf{F}}}^{{\rm e}}{{\mathbf{F}}}^{\rm p}\), material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous. Intl. J. Plastic 21, 1686–1719 (2005)

    Article  MATH  Google Scholar 

  • Gurtin, M.E., Fried, E., Anand, L.: The mechanics and thermodynamics of continua. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  • Hashiguchi, K.: Nonlinear continuum mechanics for finite elasticity-plasticity. Elsevier, Amsterdam (2020)

    Google Scholar 

  • Hashiguchi, K., Yamakawa, Y.: Introduction to finite strain theory for continuum elasto-plasticity. Wiley, Chichester (2013)

    Google Scholar 

  • Healey, T.J., Krömer, S.: Injective weak solutions in second-gradient nonlinear elasticity. ESAIM: Control Optim. & Cal. Var. 15, 863–871 (2009)

    MathSciNet  MATH  Google Scholar 

  • Jirásek, M., Bažant, Z.P.: Inelastic analysis of structures. Wiley, Chichester (2002)

    Google Scholar 

  • Khan, A.S., Huang, S.J.: Continuum theory of plasticity. Wiley, New York (1995)

    MATH  Google Scholar 

  • Kolymbas, D.: An outline of hypoplasticity. Archive Appl. Mech. 61, 143–151 (1991)

    Article  MATH  Google Scholar 

  • Kratochvíl, J.: On a finite strain theory of elastic-inelastic materials. Acta Mechanica 16, 127–142 (1973)

    Article  MATH  Google Scholar 

  • Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • Kružík, M., Roubíček, T.: Mathematical methods in continuum mechanics of solids. Springer, Cham/Switzerland (2019)

    Book  MATH  Google Scholar 

  • Lanier, J., et al.: A general formulation of hypoplasticity. Int. J. Numer. Anal. Meth. Geomech. 28, 1461–1478 (2004)

    Article  MATH  Google Scholar 

  • Lee, E., Liu, D.: Finite-strain elastic-plastic theory with application to plain-wave analysis. J. Appl. Phys. 38, 19–27 (1967)

    Article  Google Scholar 

  • Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)

    Article  MATH  Google Scholar 

  • Lions, P.L.: Mathematical topics in fluid mechanics: compressible Models, vol. 2. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  • Lubarda, V.A.: Elastoplasticity theory. CRC Press, Boca Raton (2002)

    MATH  Google Scholar 

  • Mainik, A., Mielke, A.: Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci. 19, 221–248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Málek, J., Pr\(\overset{\circ }{{\rm u}}\)ša, V., Skřivan, T., Süli, E.: Thermodynamics of viscoelastic rate-type fluids with stress diffusion. Phys. Fluids 30(023101), 1–23 (2018)

  • Martinec, Z.: Principles of continuum mechanics. Springer, Switzerland (2019)

    Book  MATH  Google Scholar 

  • Maugin, G.A.: The thermomechanics of plasticity and fracture. Cambridge Univeristy Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  • Maugin, G.A., Epstein, M.: Geometrical material structure of elastoplasticity. Intl. J. Plast. 14, 109–115 (1998)

    Article  MATH  Google Scholar 

  • Mielke, A.: Energetic formulation of multiplicative elastoplasticity using dissipation distances. Contin. Mech. Thermodyn. 15, 351–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Mielke, A., Rossi, R., Savare, G.: Global existence results for viscoplasticity at finite strain. Archive Ration. Mech. Anal. 227, 423–475 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Mielke, A., Roubíček, T.: Rate-independent elastoplasticity at finite strains and its numerical approximation. Math. Models Meth. Appl. Sci. 6, 2203–2236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Mielke, A., Roubíček, T.: Thermoviscoelasticity in Kelvin-Voigt rheology at large strains. Archive Ration. Mech. Anal. 238, 1–45 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin, R.D.: Micro-structure in linear elasticity. Archive Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Nemat-Nasser, S.: On finite deformation elasto-plasticity. Intl. J. Solid Struct. 18, 857–872 (1982)

    Article  MATH  Google Scholar 

  • Nečas, J.: Theory of multipolar fluids. In: Jentsch, L., Tröltzsch, F. (eds.) Problems and methods in mathematical physics, pp. 111–119. Vieweg+Teubner, Wiesbaden (1994)

    Chapter  Google Scholar 

  • Nečas, J., Novotný, A., Šilhavý, M.: Global solution to the ideal compressible heat conductive multipolar fluid. Comment. Math. Univ. Carolinae 30, 551–564 (1989)

    MathSciNet  MATH  Google Scholar 

  • Nečas, J., R\(\overset{\circ }{{\rm u}}\)žička, M.: Global solution to the incompressible viscous-multipolar material problem. J. Elast. 29, 175–202 (1992)

  • Nečas, J., Šilhavý, M.: Multipolar viscous fluids. Quart App. Math. 49, 247–265 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Niemunis, A.: Extended Hypoplastic Models for Soils. PhD thesis, Ruhr-Universität Bochum, (2003)

  • Rajagopal, K.R., Srinivasa, A.R.: On the thermomechanics of materials that have multiple natural configurations. Part I Viscoelasticity and classical plasticity. Zeits. angew. Math. Phys. 55, 861–893 (2004a)

  • Rajagopal, K.R., Srinivasa, A.R.: On thermomechanical restrictions of continua. Proc. R. Soc. Lond. A 460, 631–651 (2004b)

    Article  MathSciNet  MATH  Google Scholar 

  • Rajagopal, K.R., Srinivasa, A.R.: On the role of the Eshelby energy-momentum tensor in materials with multiple natural configurations. Math. Mech. Solids 10, 3–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Roubíček, T.: Nonlinear partial differential equations with applications, 2nd edn. Birkhäuser, Basel (2013)

    Book  MATH  Google Scholar 

  • Roubíček, T.: Visco-elastodynamics at large strains Eulerian. Zeitschrift f. angew. Math. Phys. (2021) https://doi.org/10.1007/s00033-022-01686-z

  • Roubíček, T., Stefanelli, U.: Finite thermoelastoplasticity and creep under small elastic strain. Math. Mech. Solids 24, 1161–1181 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Tamagnini, C., Viggiani, G., Chambon, R.: A review of two different approaches to hypoplasticity. In: Kolymbas, D. (ed.) Constitutive Modelling of Granular Materials, pp. 107–145. Springer, Berlin (2000)

    Chapter  Google Scholar 

  • Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Truesdell, C.: Hypo-elasticity. Arch. Ration. Mech. Anal. 4, 83–133 (1955)

    MathSciNet  MATH  Google Scholar 

  • Volokh, K.Y.: An approach to elastoplasticity at large deformations. Euro. J. Mech. A/Solids 39, 153–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, H., Bruhns, O.T., Meyers, A.: A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and the deformation gradient. Intl. J. Plast. 16, 143–177 (2000)

    Article  MATH  Google Scholar 

  • Zhang, M., Nguyen, K., Segurado, J., Montáns, F.J.: A multiplicative finite strain crystal plasticity formulation based on additive elastic corrector rates: theory and numerical implementation. Intl. J. Plasticity 137, 102899 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The author is very thankful for extremely valuable and inspiring discussions and comments to the manuscript to Giuseppe Tomassetti. Also valuable discussions about transport equations with Sebastian Schwarzacher and about hypoplasticity models with Yannis F. Dafalias are warmly acknowledged. Careful reading and many valuable suggestions by two anonymous referees are thankfully acknowledged, too. Also the supports from the MŠMT ČR (Ministry of Education of the Czech Republic) project CZ.02.1.01/0.0/0.0/15-003/0000493 and the institutional support RVO:61388998 (ČR) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Roubíček.

Additional information

Communicated by Tim Healey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roubíček, T. Quasistatic Hypoplasticity at Large Strains Eulerian. J Nonlinear Sci 32, 45 (2022). https://doi.org/10.1007/s00332-022-09785-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09785-x

Keywords

Mathematics Subject Classification

Navigation