Skip to main content
Log in

On a finite strain theory of elastic-inelastic materials

Über eine nichtlineare Theorie der Verformung eines elastischen-inelastischen Werkstoffes

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

An attempt is made to develop a theory of inelastic behavior of crystalline materials subjected to arbitrary deformation. The introduced concept of elastic motion leads to a simple decomposition rule: the total velocity gradient is the sum of the elastic velocity gradient and the inelastic velocity gradient. The important role of rotations and relevant constitutive relations is discussed and illustrated by an example of a tensile test of a single crystal. The assumption usual in plasticity that plastic deformation does not change the volume of the body follows in the present theory as a consequence of the second law of thermodynamics and material symmetry.

Zusammenfassung

In dieser Arbeit wird der Versuch gemacht, eine Theorie des inelastischen Verhaltens der kristallinen Werkstoffe zu entwickeln, die in einer beliebigen Weise verformt werden. Das hier eingeführte Konzept der elastischen Bewegung führt zu einer einfachen Zerlegungsregel: Der Gradient der gesamten Geschwindigkeit ist gleich der Summe des Gradienten der elastischen Geschwindigkeit und des Gradienten der inelastischen Geschwindigkeit. Die wichtige Rolle der Drehungen und die entsprechenden Materialgleichungen werden diskutiert und illustriert durch ein Beispiel des Zugversuches an einem Einkristall. Die in der Plastizität übliche voraussetzung, daß die plastische Verformung das Volumen des Körpers nicht verändert, ergibt sich in der dargestellten Theorie als Folgerung aus dem zweiten Hauptsatz der Thermodynamik und der Symmetrie des Materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Owen, D. R.: Thermodynamics of materials with elastic range. Arch. Rational Mech. Anal.31, 91 (1968).

    Google Scholar 

  2. Owen, D. R.: A mechanical theory of materials with elastic range. Arch. Rational. Mech. Anal.37, 85 (1970).

    Google Scholar 

  3. Lee, E. H., andD. T. Liu: Finite-strain elastic-plastic theory with application to planewave analysis. J. Appl. Phys.38, 19 (1967).

    Google Scholar 

  4. Lee, E. H.: Elastic-plastic deformation at finite strains. J. Appl. Mech.36, 1 (1969).

    Google Scholar 

  5. Perzyna, P., andW. Wojno: Thermodynamics of a rate sensitive plastic material. Arch. Mechaniki Stosowanej20, 499 (1968).

    Google Scholar 

  6. Kratochvíl, J., andO. W. Dillon: Thermodynamics of elastic-plastic materials as a theory with internal state variables. J. Appl. Phys.40, 3207 (1969).

    Google Scholar 

  7. Kratochvíl, J., andO. W. Dillon: Thermodynamics of crystalline elastic-visco-plastic materials. J. Appl. Phys.41, 1470 (1970).

    Google Scholar 

  8. Coleman, B. D., andM. E. Gurtin: Thermodynamics with internal state variables. J. Chem. Phys.47, 597 (1967).

    Google Scholar 

  9. Valanis, K. C.: Unified theory of thermomechanical behavior of viscoelastic materials. Mechanical behavior of materials under dynamic loads. (Lindholm, U. S., ed.), Berlin-Heidelberg-New York: Springer. 1968.

    Google Scholar 

  10. Kratochvíl, J.: Finite-strain theory of crystalline elastic-inelastic materials. J. Appl. Phys.42, 1104 (1971).

    Google Scholar 

  11. Zarka, J.: Sur la viscoplasticité des métaux. Mémorial de l'Artillerie française44, 223 (1970).

    Google Scholar 

  12. Freund, L. B.: Constitative equations for elastic-plastic materials at finite strain. Int. J. Solids Structures6, 1193 (1970).

    Google Scholar 

  13. Valanis, K. C.: On the thermodynamic foundation of classical plasticity. Acta Mech.9, 278 (1970).

    Google Scholar 

  14. Kröner, E.: Dislocation: A new concept in the continuum theory of plasticity. J. Math. Phys.42, 27 (1962).

    Google Scholar 

  15. Coleman, B. D., andW. Noll: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal.13, 167 (1963).

    Google Scholar 

  16. Gurtin, M. E., andW. O. Williams: On the inclusion of the complete symmetry group in the unimodular group. Arch. Rational Mech. Anal.23, 163 (1966).

    Google Scholar 

  17. Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal.2, 197 (1958).

    Google Scholar 

  18. Coleman, B. D.: On thermodynamics, strain impulses, and viscoelasticity. Arch. Rational Mech. Anal.17, 230 (1964).

    Google Scholar 

  19. Coddington, E. A., andN. Levinson: Theory of ordinary differential equations. New York-Toronto-London: McGraw-Hill. 1955.

    Google Scholar 

  20. Schmid, E., andW. Boas: Plasticity of crystals. London: Hughes and Co. 1950.

    Google Scholar 

  21. Truesdell, C., andR. A. Toupin: The classical field theories. Handbuch der Physik III/1, edited byS. Flügge. Berlin-Göttingen-Heidelberg: Springer. 1960.

    Google Scholar 

  22. Gillis, P. P., andJ. J. Gilman: Dynamical dislocation theory of crystal plasticity. I. The yield stress. J. Appl. Phys.36, 3370 (1965).

    Google Scholar 

  23. Wang, C.-C.: A new representation theorem for isotropic functions: An answer to Professor G. F. Smith's criticism of my papers on representations for isotropic functions, Part 2. Arch. Rational Mech. Anal.36, 198 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kratochvíl, J. On a finite strain theory of elastic-inelastic materials. Acta Mechanica 16, 127–142 (1973). https://doi.org/10.1007/BF01177131

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177131

Keywords

Navigation