Skip to main content

Advertisement

Log in

Catalase −262C>T polymorphism in systemic lupus erythematosus in Poland

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

It has been reported that reactive oxygen species contribute to pathogenesis of systemic lupus erythematosus (SLE). Catalase (CAT) −330C>T transition, known also as −262C>T, generates three genotypes. The CAT −330CC genotype is associated with a significantly lower CAT expression in comparison to −330CT and −330CT genotypes. Therefore, using restriction length fragment polymorphism analysis, we compared the frequencies of CAT −330C>T polymorphic variants between SLE patients (n = 102) and controls (n = 199). We did not observe significant differences in the prevalence of CAT −330C>T polymorphic variants in SLE patients and controls. However, we found that the CAT −330CC genotype (recessive model) showed a significant association with thrombocytopenia OR = 7.314 (1.977–27.057, P = 0.0017). We also observed that the CAT −330CC genotype (recessive model) is linked with leukopenia OR = 3.232 (1.361–7.676, P = 0.0118), renal manifestations OR = 2.403 (1.085–5.321, P = 0.0471) and presence of anti-snRNP Ab OR = 4.206 (95% CI = 1.405–12.590, P = 0.0131), and anti-Scl-70 Ab, OR = 3.143 (95% CI = 1.171–8.433, P = 0.0343) in SLE patients. Our findings suggest that the CAT −330CC genotype may contribute to some clinical manifestations in patients with SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer V, Bauer F (1999) Reactive oxygen species as mediators of tissue protection and injury. Gen Physiol Biophys 18:7–14

    PubMed  CAS  Google Scholar 

  2. Taysi S, Gul M, Sari RA, Akcay F, Bakan N (2002) Serum oxidant/antioxidant status of patients with systemic lupus erythematosus. Clin Chem Lab Med 40:684–688

    Article  PubMed  CAS  Google Scholar 

  3. Sekigawa I, Naito T, Hira K, Mitsuishi K, Ogasawara H, Hashimoto H, Ogawa H (2004) Possible mechanisms of gender bias in SLE: a new hypothesis involving a comparison of SLE with atopy. Lupus 13:217–222

    Article  PubMed  CAS  Google Scholar 

  4. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH (1992) Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum 35:630–640

    Article  PubMed  CAS  Google Scholar 

  5. Piotrowski PC, Duriagin S, Jagodzinski PP (2005) Expression of human endogenous retrovirus clone 4–1 may correlate with blood plasma concentration of anti-U1 RNP and anti-Sm nuclear antibodies. Clin Rheumatol 24:620–624

    Article  PubMed  Google Scholar 

  6. Januchowski R, Wudarski M, Chwalińska-Sadowska H, Jagodzinski PP (2007) Prevalence of ZAP-70, LAT, SLP-76, and DNA methyltransferase 1 expression in CD4(+) T cells of patients with systemic lupus erythematosus. Clin Rheumatol. doi:10.1007/s10067-007-0644-8

  7. Serban MG, Negru T (1998) Antioxidant protection in collagen-vascular diseases. Rom J Intern Med 36:245–250

    PubMed  CAS  Google Scholar 

  8. Túri S, Németh I, Torkos A, Sághy L, Varga I, Matkovics B, Nagy J (1997) Oxidative stress and antioxidant defense mechanism in glomerular diseases. Free Radic Biol Med 22:161–168

    Article  PubMed  Google Scholar 

  9. Ahsan H, Ali A, Ali R (2003) Oxygen free radicals and systemic autoimmunity. Clin Exp Immunol 131:398–404

    Article  PubMed  CAS  Google Scholar 

  10. Suryaprabha P, Das UN, Ramesh G, Kumar KV, Kumar GS (1991) Reactive oxygen species, lipid peroxides and essential fatty acids in patients with rheumatoid arthritis and systemic lupus erythematosus. Prostaglandins Leukot Essent Fatty Acids 43:251–255

    Article  PubMed  CAS  Google Scholar 

  11. Nuttall SL, Heaton S, Piper MK, Martin U, Gordon C (2003) Cardiovascular risk in systemic lupus erythematosus–evidence of increased oxidative stress and dyslipidaemia. Rheumatology 42:758–762

    Article  PubMed  CAS  Google Scholar 

  12. Gergely P Jr, Grossman C, Niland B, Puskas F, Neupane H, Allam F, Banki K, Phillips PE, Perl A (2002) Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum 46:175–190

    Article  PubMed  CAS  Google Scholar 

  13. Ahmad R, Alam K, Ali R (2000) Antigen-binding characteristics of antibodies against hydroxyl radical modified thymidine monophosphate. Immunol Lett 71:111–115

    Article  PubMed  CAS  Google Scholar 

  14. Ashok BT, Ali R (1999) Antigen-binding characteristics of experimentally induced antibodies against hydroxyl radical modified native DNA. Autoimmunity 29:11–19

    Article  PubMed  CAS  Google Scholar 

  15. Termaat RM, Brinkman K, van Gompel F, van den Heuvel LP, Veerkamp JH, Smeenk RJ, Berden JH (1990) Cross-reactivity of monoclonal anti-DNA antibodies with heparan sulfate is mediated via bound DNA/histone complexes. J Autoimmun 3:531–545

    Article  PubMed  CAS  Google Scholar 

  16. Quan F, Korneluk RG, Tropak MB, Gravel RA (1986) Isolation and characterization of the human catalase gene. Nucleic Acids Res 14:5321–5335

    Article  PubMed  CAS  Google Scholar 

  17. Scofield RH, Bruner GR, Kelly JA, Kilpatrick J, Bacino D, Nath SK, Harley JB (2003) Thrombocytopenia identifies a severe familial phenotype of systemic lupus erythematosus and reveals genetic linkages at 1q22 and 11p13. Blood 101:992–997

    Article  PubMed  CAS  Google Scholar 

  18. Nilakantan V, Spear BT, Glauert HP (1998) Liver-specific catalase expression in transgenic mice inhibits NF-kappaB activation and DNA synthesis induced by the peroxisome proliferator ciprofibrate. Carcinogenesis 19:631–637

    Article  PubMed  CAS  Google Scholar 

  19. Forsberg L, Lyrenäs L, de Faire U, Morgenstern R (2001) A common functional C–T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic Biol Med 30:500–505

    Article  PubMed  CAS  Google Scholar 

  20. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277

    Article  PubMed  CAS  Google Scholar 

  21. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725

    Article  PubMed  CAS  Google Scholar 

  22. Mostowska A, Hozyasz KK, Lianeri M, Piwowar W, Jagodzinski PP (2007) Polymorphic variants of genes encoding main antioxidant enzymes and the risk of CL/P-affected pregnancies. Clin Biochem 40:416–419

    Article  PubMed  CAS  Google Scholar 

  23. Venkatraman JT, Chandrasekar B, Kim JD, Fernandes G (1994) Genotype effects on the antioxidant enzymes activity and mRNA expression in liver and kidney tissues of autoimmune-prone MRL/MpJ-lpr/lpr mice. Biochim Biophys Acta 1213:167–175

    PubMed  CAS  Google Scholar 

  24. Venkatraman JT, Chandrasekar B, Kim JD, Fernandes G (1994) Effects of n-3 and n-6 fatty acids on the activities and expression of hepatic antioxidant enzymes in autoimmune-prone NZB × NZW F1 mice. Lipids 8:561–568

    Article  Google Scholar 

  25. Ren Y, Tang J, Mok MY, Chan AW, Wu A, Lau CS (2003) Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 48:2888–2897

    Article  PubMed  Google Scholar 

  26. Hepburn AL, Lampert IA, Boyle JJ, Horncastle D, Ng WF, Layton M, Vyse TJ, Botto M, Mason JC (2007) In vivo evidence for apoptosis in the bone marrow in systemic lupus erythematosus. Ann Rheum Dis 66:1106–1109

    Article  PubMed  Google Scholar 

  27. Thorén FB, Betten A, Romero AI, Hellstrand K (2007) Cutting edge: antioxidative properties of myeloid dendritic cells: protection of T cells and NK cells from oxygen radical-induced inactivation and apoptosis. J Immunol 179:21–25

    PubMed  Google Scholar 

  28. Kalluri R, Cantley LG, Kerjaschki D, Neilson EG (2000) Reactive oxygen species expose cryptic epitopes associated with autoimmune goodpasture syndrome. J Biol Chem 275:20027–20032

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The technical assistance of Ms. Agnieszka Mikuczewska is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł P. Jagodziński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warchoł, T., Lianeri, M., Wudarski, M. et al. Catalase −262C>T polymorphism in systemic lupus erythematosus in Poland. Rheumatol Int 28, 1035–1039 (2008). https://doi.org/10.1007/s00296-008-0569-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-008-0569-9

Keywords

Navigation