Skip to main content

Advertisement

Log in

Nanomechanical evaluation of poly (vinylidene fluoride) nanocomposites reinforced with hybrid graphene nanoplatelets and titanium dioxide

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study further enhanced nanomechanical properties of poly (vinylidene fluoride) (PVDF) using hybrid graphene nanoplatelets (GNPs) and titanium dioxide (TiO2) nanopowder. The hybrid nanocomposites were prepared via solution blending and melt-mixing techniques. GNPs and TiO2 nanopowder were surface modified to promote compatibility with the PVDF matrix. Scanning electron microscope (SEM) revealed high degree of dispersion of the nanoparticles in the polymer matrix. The nanomechanical properties were examined using Anton Paar Instrumented Nanoindenter. By incorporation of GNPs-TiO2 hybrid nanoparticles in the matrix, there were increase in nanomechanical behaviors such as hardness, elastic modulus, stiffness and resistance to plastic deformation. For instance, hardness of 3.34wt%GNPs-10wt%TiO2 (115.2 MPa) increased by 79.7% and 17.2% compared to PVDF (64.1 MPa) and 3.34wt%GNPs (98.3 MPa) nanocomposite, respectively. The enhanced properties of the hybrid nanocomposites were due to network strengthening and hardening and restriction of polymer chains mobility offered by rough surfaces of GNPs-TiO2 hybrid nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Uyor UO, Popoola API, Popoola OM, Aigbodion VS (2019) Enhanced thermal and mechanical properties of polymer reinforced with slightly functionalized graphene nanoplatelets. J Test Eval 47(4):2681–2692.

    Article  Google Scholar 

  2. Peng H, Sun X, Weng W, Fang X (2017) Energy storage devices based on polymers. In: Polymer Materials for Energy and Electronic Applications. Elsevier, Amsterdam

  3. Lejun Q, Linnea P, Tieliang L (2014) Review of recent activities on dielectric films for capacitor applications. J Int Counc Electr Eng 4(1):1–6. https://doi.org/10.5370/JICEE.2014.4.1.001

    Article  Google Scholar 

  4. Huang X, Jiang P, Tanaka T (2011) A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul Mag 27(4):8–16. https://doi.org/10.1109/mei.2011.5954064

    Article  Google Scholar 

  5. Shen Y, Hu Y, Chen W, Wang J, Guan Y, Du J, Zhang X, Ma J, Li M, Lin Y, Chen L-q, Nan C-W (2015) Modulation of topological structure induces ultrahigh energy density of graphene/Ba 0.6 Sr 0.4 TiO3 nanofiber/polymer nanocomposites. Nano Energy 18:176–186. https://doi.org/10.1016/j.nanoen.2015.10.003

    Article  CAS  Google Scholar 

  6. Uyor UO, Popoola AP, Popoola O, Aigbodion VS (2018) Energy storage and loss capacity of graphene-reinforced poly (vinylidene fluoride) nanocomposites from electrical and dielectric properties perspective: a review. Adv Polym Technol 37(8):2838–2858

    Article  CAS  Google Scholar 

  7. Mohammadi B, Yousefi AA, Bellah SM (2007) Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym Testing 26(1):42–50. https://doi.org/10.1016/j.polymertesting.2006.08.003

    Article  CAS  Google Scholar 

  8. Fan P, Wang L, Yang J, Chen F, Zhong M (2012) Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology 23(36):1–8. https://doi.org/10.1088/0957-4484/23/36/365702

    Article  CAS  Google Scholar 

  9. Thangavel E, Ramasundaram S, Pitchaimuthu S, Hong SW, Lee SY, Yoo S-S, Kim D-E, Ito E, Kang YS (2014) Structural and tribological characteristics of poly(vinylidene fluoride)/functionalized graphene oxide nanocomposite thin films. Compos Sci Technol 90:187–192. https://doi.org/10.1016/j.compscitech.2013.11.007

    Article  CAS  Google Scholar 

  10. Uyor U, Popoola O, Aigbodion V (2019) Advanced rheological and mechanical properties of three-phase polymer nanocomposites through strong interfacial interaction of graphene and titania. Int J Adv Manuf Technol 104(1–4):1311–1319

    Article  Google Scholar 

  11. Yuan S, Chua CK, Zhou K 2016 Dynamic mechanical behaviors of laser sintered polyurethane incorporated with mwcnts. In: Chua CK, Yeong WY, Tan MJ, Liu E, Tor SB (eds) 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016), Singapore, 2016. Research Publishing, Singapore, Singapore, 361–366 https://doi.org/10.3850/2424-8967 V02–076

  12. Park S, He S, Wang J, Stein A, Macosko CW (2016) Graphene-polyethylene nanocomposites: effect of graphene functionalization. Polymer 104:1–9

    Article  CAS  Google Scholar 

  13. Yuan B, Bao C, Song L, Hong N, Liew KM, Hu Y (2014) Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J 237:411–420

    Article  CAS  Google Scholar 

  14. Jun Y-S, Um JG, Jiang G, Lui G, Yu A (2018) Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties. Compos B Eng 133:218–225

    Article  CAS  Google Scholar 

  15. Uyor U, Popoola O 2018 Improved Energy Storage Performance of Insulated Graphene/Polymer Nanocomposites. In: 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), IEEE, 189–193

  16. Wu W, Tu J, Li H, Zhan Z, Huang L, Cai Z, Li Q, Jiang M, Huang J (2020) Suppressed dielectric loss and enhanced thermal conductivity in poly (vinylidene fluoride) nanocomposites using polyethylene glycol-grafted graphene oxide. J Mater Sci: Mater Electron 31(1):807–813

    CAS  Google Scholar 

  17. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57(7):1061–1105. https://doi.org/10.1016/j.pmatsci.2012.03.002

    Article  CAS  Google Scholar 

  18. Shen X-J, Pei X-Q, Fu S-Y, Friedrich K (2013) Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content. Polymer 54(3):1234–1242

    Article  CAS  Google Scholar 

  19. Li C, Xiang M, Ye L (2017) Intercalation structure and highly enhancing tribological performance of monomer casting nylon-6/graphene nano-composites. Compos A Appl Sci Manuf 95:274–285

    Article  CAS  Google Scholar 

  20. Wang F, Drzal LT, Qin Y, Huang Z (2014) Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50(3):1082–1093. https://doi.org/10.1007/s10853-014-8665-6

    Article  CAS  Google Scholar 

  21. Yu C, Li D, Wu W, Luo C, Zhang Y, Pan C (2014) Mechanical property enhancement of PVDF/graphene composite based on a high-quality graphene. J Mater Sci 49(24):8311–8316. https://doi.org/10.1007/s10853-014-8539-y

    Article  CAS  Google Scholar 

  22. Díez-Pascual AM, Gómez-Fatou MA, Ania F, Flores A (2015) Nanoindentation in polymer nanocomposites. Prog Mater Sci 67:1–94

    Article  Google Scholar 

  23. Koumoulos EP, Jagdale P, Kartsonakis IA, Giorcelli M, Tagliaferro A, Charitidis CA (2015) Carbon nanotube/polymer nanocomposites: a study on mechanical integrity through nanoindentation. Polym Compos 36(8):1432–1446

    Article  CAS  Google Scholar 

  24. Sreeram A, Patel NG, Venkatanarayanan RI, McLaughlin JB, DeLuca SJ, Yuya PA, Krishnan S (2014) Nanomechanical properties of poly (para-phenylene vinylene) determined using quasi-static and dynamic nanoindentation. Polym Testing 37:86–93

    Article  CAS  Google Scholar 

  25. Silibin MV, Bystrov VS, Karpinsky DV, Nasani N, Goncalves G, Gavrilin IM, Solnyshkin AV, Marques PAAP, Singh B, Bdikin IK (2017) Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films. Appl Surf Sci 421:42–51. https://doi.org/10.1016/j.apsusc.2017.01.291

    Article  CAS  Google Scholar 

  26. Wang J, Yi M, Shen Z, Liu L, Zhang X, Ma S (2019) Enhanced thermal and mechanical properties of poly (vinylidene fluoride) nanocomposites reinforced by liquid-exfoliated graphene. J Macromol Sci, Part A 56(7):733–740

    Article  CAS  Google Scholar 

  27. Shokrieh M, Hosseinkhani M, Naimi-Jamal M, Tourani H (2013) Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polym Testing 32(1):45–51

    Article  CAS  Google Scholar 

  28. Chen B, Li X, Jia Y, Xu L, Liang H, Li X, Yang J, Li C, Yan F (2018) Fabrication of ternary hybrid of carbon nanotubes/graphene oxide/MoS2 and its enhancement on the tribological properties of epoxy composite coatings. Compos A Appl Sci Manuf 115:157–165

    Article  CAS  Google Scholar 

  29. Liem H, Choy H (2013) Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers. Solid State Commun 163:41–45

    Article  CAS  Google Scholar 

  30. Hu H, Zhang F, Lim S, Blanloeuil P, Yao Y, Guo Y, Wang CH (2019) Surface functionalisation of carbon nanofiber and barium titanate by polydopamine to enhance the energy storage density of their nanocomposites. Compos B Eng 178:107459

    Article  CAS  Google Scholar 

  31. Wu L, Wu K, Lei C, Liu D, Du R, Chen F, Fu Q (2019) Surface modifications of boron nitride nanosheets for poly (vinylidene fluoride) based film capacitors: advantages of edge-hydroxylation. J Mater Chem A 7(13):7664–7674

    Article  CAS  Google Scholar 

  32. Uyor U, Popoola A, Popoola O, Aigbodion V (2019) Effects of titania on tribological and thermal properties of polymer/graphene nanocomposites. J Thermoplast Compos Mater 33(8):1030–1047

    Article  Google Scholar 

  33. Ijadpanah-Saravy H, Safari M, Khodadadi-Darban A, Rezaei A (2014) Synthesis of titanium dioxide nanoparticles for photocatalytic degradation of cyanide in wastewater. Anal Lett 47(10):1772–1782

    Article  CAS  Google Scholar 

  34. Chen M, Yin J, Jin R, Yao L, Su B, Lei Q (2015) Dielectric and mechanical properties and thermal stability of polyimide–graphene oxide composite films. Thin Solid Films 584:232–237

    Article  CAS  Google Scholar 

  35. Maity N, Mandal A, Nandi AK (2016) Hierarchical nanostructured polyaniline functionalized graphene/poly(vinylidene fluoride) composites for improved dielectric performances. Polymer 103:83–97. https://doi.org/10.1016/j.polymer.2016.09.048

    Article  CAS  Google Scholar 

  36. Shen X-J, Pei X-Q, Liu Y, Fu S-Y (2014) Tribological performance of carbon nanotube–graphene oxide hybrid/epoxy composites. Compos B Eng 57:120–125

    Article  CAS  Google Scholar 

  37. Uyor U, Popoola O, Aigbodion V (2018) Mechanically insulated graphene/polymer nanocomposites with improved dielectric performance and energy storage capacity. Polym Sci, Series A 60(6):875–885

    Article  CAS  Google Scholar 

  38. Yang J, Zhang Z, Friedrich K, Schlarb AK (2007) Creep resistant polymer nanocomposites reinforced with multiwalled carbon nanotubes. Macromol Rapid Commun 28(8):955–961

    Article  CAS  Google Scholar 

  39. Azo M (2020) Titanium Dioxide - Titania (TiO2). https://www.azom.com/properties.aspx?ArticleID=1179. Accessed 30th September 2020

  40. Zhao P, Wang K, Yang H, Zhang Q, Du R, Fu Q (2007) Excellent tensile ductility in highly oriented injection-molded bars of polypropylene/carbon nanotubes composites. Polymer 48(19):5688–5695

    Article  CAS  Google Scholar 

  41. Li Z, Chen M, Ma W (2016) Polypropylene/hydroxyl-multiwall carbon nanotubes composites: crystallization behavior, mechanical properties, and foaming performance. J Mater Sci 51(9):4566–4579

    Article  CAS  Google Scholar 

  42. Li J (2017) Multiwalled carbon nanotubes reinforced polypropylene composite material. J Nanomater 2017:1–5

    CAS  Google Scholar 

  43. Bhattacharyya A, Chen S, Zhu M (2014) Graphene reinforced ultra high molecular weight polyethylene with improved tensile strength and creep resistance properties. Expr Polym Lett 8(2):74

    Article  Google Scholar 

  44. Hassanzadeh-Aghdam M, Ansari R, Mahmoodi M, Darvizeh A (2018) Effect of nanoparticle aggregation on the creep behavior of polymer nanocomposites. Compos Sci Technol 162:93–100

    Article  CAS  Google Scholar 

  45. Hassanzadeh-Aghdam MK, Mahmoodi MJ, Ansari R (2019) Creep performance of CNT polymer nanocomposites-An emphasis on viscoelastic interphase and CNT agglomeration. Compos B Eng 168:274–281

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We appreciate the Faculty of Engineering and the Built Environment and the Centre for Energy and Electric Power, Tshwane University of Technology, South Africa, for their supports

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. O. Uyor.

Ethics declarations

Conflict of interest

There is no conflict of interest to be declared in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uyor, U.O., Popoola, A.P.I., Popoola, O.M. et al. Nanomechanical evaluation of poly (vinylidene fluoride) nanocomposites reinforced with hybrid graphene nanoplatelets and titanium dioxide. Polym. Bull. 79, 2345–2361 (2022). https://doi.org/10.1007/s00289-021-03604-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03604-1

Keywords

Navigation