Skip to main content
Log in

On Mechanical, Thermal, Morphological, and 4D Capabilities of Polyvinylidene Fluoride Nanocomposites: Effect of Mechanical and Chemical-Assisted Mechanical Blending

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Polyvinylidene fluoride (PVDF) nano-composites are known for the harmonious effect of flexibility, biocompatibility, formability, toughness, higher fatigue life, and piezoelectric properties. Nevertheless, little has been reported on the comparison of mechanical blending (MB) and chemical-assisted mechanical blending (CAMB) of PVDF-BaTiO3-graphene (Gr) nano-composites. This paper reports the comparison of mechanical, thermal, morphological, and 4D properties of PVDF-BaTiO3-Gr nano-composites prepared by MB and CAMB for piezoelectric-based pressure sensors and nanogenerators. In the first stage, feedstock filaments of PVDF-BaTiO3-Gr nano-composites got prepared by MB and CAMB. After this, the effect of blending process parameters on mechanical, thermal, and morphological properties got established on 3D-printed tensile, flexural, and dynamic mechanical analysis samples at optimized settings of fused deposition modeling setup (in the second stage). The results have been supported by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) analysis. The DSC analysis suggested that the PVDF-BaTiO3-Gr nano-composite prepared by MB is thermally more stable than CAMB, as the MB composites absorbed more heat (31.09 J/g) in comparison with the CAMB composite (26.59 J/g). On the other hand, the piezoelectric coefficient (D33) of the dielectric constant of CAMB-based samples was 30.2pC/N, 55, respectively, better than MB (20.1pC/N, 18). Also, results indicated that 3D-printed functional prototypes prepared by CAMB have better mechanical and morphological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. N. Murayama, K. Nakamura, H. Obara, and M. Segawa, The Strong Piezoelectricity in Polyvinylidene Fluoride (PVDF), Ultrasonics, 1976, 14(1), p 15–24.

    Article  CAS  Google Scholar 

  2. M.G. Broadhurst, and G.T. Davis, Physical Basis for Piezoelectricity in PVDF, Ferroelectrics, 1984, 60(1), p 3–13.

    Article  CAS  Google Scholar 

  3. A. Vinogradov, and F. Holloway, Electro-Mechanical Properties of the Piezoelectric Polymer PVDF, Ferroelectrics, 1999, 226(1), p 169–181.

    Article  CAS  Google Scholar 

  4. R.L. Hadimani, D.V. Bayramol, N. Sion, T. Shah, L. Qian, S. Shi, and E. Siores, Continuous Production of Piezoelectric PVDF Fibre for E-Textile Applications, Smart Mater. Struct., 2013, 22(7), 075017.

    Article  CAS  Google Scholar 

  5. B. Bera, and M.D. Sarkar, Piezoelectricity in PVDF and PVDF Based Piezoelectric Nanogenerator: A Concept, IOSR J. Appl. Phys., 2017, 09(03), p 95–99. https://doi.org/10.9790/4861-0903019599

    Article  Google Scholar 

  6. B. Lin, and V. Giurgiutiu, Modeling, and Testing of PZT and PVDF Piezoelectric Wafer Active Sensors, Smart Mater. Struct., 2006, 15(4), p 1085.

    Article  CAS  Google Scholar 

  7. A. Jain, A.K. Sharma, and A. Jain, Dielectric and Piezoelectric Properties of PVDF/PZT Composites: A Review, Polym. Eng. Sci., 2015, 55(7), p 1589–1616.

    Article  CAS  Google Scholar 

  8. V. Cauda, S. Stassi, K. Bejtka, and G. Canavese, Nanoconfinement: an Effective Way to Enhance PVDF Piezoelectric Properties, ACS Appl. Mater. Interfaces., 2013, 5(13), p 6430–6437.

    Article  CAS  Google Scholar 

  9. D. Vatansever, R.L. Hadimani, T. Shah, and E. Siores, An Investigation of Energy Harvesting from Renewable Sources with PVDF and PZT, Smart Mater. Struct., 2011, 20(5), 055019.

    Article  Google Scholar 

  10. A. Ambrosy, and K. Holdik, Piezoelectric PVDF Films as Ultrasonic Transducers, J. Phys. E: Sci. Instrum., 1984, 17(10), p 856.

    Article  CAS  Google Scholar 

  11. W. Eisenmenger, and M. Haardt, Observation of Charge Compensated Polarization Zones in PVDF Films by Piezoelectric Acoustic Step-Wave Response, Solid State Commun., 1982, 41(12), p 917–920.

    Article  CAS  Google Scholar 

  12. R. Kumar, R. Singh, V. Kumar, and P. Kumar, On Mn-doped ZnOnano Particles Reinforced in PVDF Matrix for Fused Filament Fabrication: Mechanical, Thermal, Morphological, and 4D Properties, J. Manuf. Process., 2021, 62, p 817–832.

    Article  Google Scholar 

  13. Y.R. Wang, J.M. Zheng, G.Y. Ren, P.H. Zhang, and C. Xu, A Flexible Piezoelectric Force Sensor Based on PVDF Fabrics, Smart Mater. Struct., 2011, 20(4), 045009.

    Article  Google Scholar 

  14. H. Kim, F. Torres, Y. Wu, D. Villagran, Y. Lin, and T.L. Tseng, Integrated 3D Printing and Corona Poling Process of PVDF Piezoelectric Films for Pressure Sensor Application, Smart Mater. Struct., 2017, 26(8), 085027.

    Article  Google Scholar 

  15. R. Kumar, R. Singh, and I.P. Ahuja, Mechanical, Thermal and Micrographic Investigations of Friction Stir Welded: 3D Printed Melt Flow Compatible Dissimilar Thermoplastics, J. Manuf. Process., 2019, 38, p 387–395.

    Article  Google Scholar 

  16. L. Lijun, W. Ding, J. Liu, and B. Yang, Flexible PVDF Based Piezoelectric Nanogenerators, Nano Energy, 2020, 78, p 105251. https://doi.org/10.1016/j.nanoen.2020.105251

    Article  CAS  Google Scholar 

  17. R. Sharma, R. Singh, and A. Batish, Investigations for Barium Titanate and Graphene Reinforced PVDF Matrix for 4D Applications, Encyclopedia of Renewable and Sustainable Materials. Elsevier, 2020, p 366–375. https://doi.org/10.1016/B978-0-12-803581-8.11306-2

    Chapter  Google Scholar 

  18. G. Tian, W. Deng, Y. Gao, D. Xiong, C. Yan, and X. He, Lamellar Crystal Baklava-Structured PZT/PVDF Piezoelectric Sensor Toward Individual Table Tennis Training, Nano Energy, 2019, 59, p 574–581.

    Article  CAS  Google Scholar 

  19. L. Jin, S. Ma, W. Deng, C. Yan, and T. Yang, Polarization-Free High-Crystallization β-PVDF Piezoelectric Nanogenerator Toward Self-Powered 3D Acceleration Sensor, Nano Energy, 2018, 50, p 632–638.

    Article  CAS  Google Scholar 

  20. A. Pal, A. Sasmal, B. Manoj, and D.P. Rao, Enhancement in Energy Storage and Piezoelectric Performance of Three-Phase (PZT/MWCNT/PVDF) Composite, Mater. Chem. Phys., 2020, 244, 122639.

    Article  CAS  Google Scholar 

  21. I. Chinya, A. Sasmal, and S. Sen, Conducting Polyaniline Decorated In-Situ Poled Ferrite Nanorod-PVDF Based Nanocomposite as Piezoelectric Energy Harvester, J. Alloy. Compd., 2020, 815, 152312.

    Article  CAS  Google Scholar 

  22. Ö.F. Ünsal, Y. Altın, and A. ÇelikBedeloğlu, Poly (Vinylidene Fluoride) Nanofiber-Based Piezoelectric Nanogenerators Using Reduced Graphene Oxide/Polyaniline, J. Appl. Polym. Sci., 2020, 137(13), p 48517.

    Article  Google Scholar 

  23. A.S. Mangat, S. Singh, M. Gupta, and R. Sharma, Experimental Investigations On Natural Fiber Embedded Additive Manufacturing-Based Biodegradable Structures for Biomedical Applications, Rapid Prototyp. J., 2018, 24(7), p 1221–1234. https://doi.org/10.1108/RPJ-08-2017-0162

    Article  Google Scholar 

  24. M. Brandt, H. Frenzel, H. Hochmuth, M. Lorenz, M. Grundmann, and J. Schubert, Ferroelectric Thin Film Field-Effect Transistors Based on ZnO/BaTiO 3 Heterostructures, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenomena, 2009, 27(3), p 1789–1793.

    Article  CAS  Google Scholar 

  25. R. Sharma, R. Singh, R. Penna, and F. Fraternali, Investigations for Mechanical Properties of Hap, PVC, and PP-Based 3D Porous Structures Obtained Through Biocompatible FDM Filaments, Compos. B Eng., 2018, 132, p 237–243.

    Article  CAS  Google Scholar 

  26. L. Yang, Q. Zhao, K. Chen, Y. Ma, Y. Wu, H. Ji and, J. Qiu, PVDF-Based Composition-Gradient Multilayered Nanocomposites for Flexible High-Performance Piezoelectric Nanogenerators, ACS Appl. Mater. Interfaces., 2020, 12(9), p 11045–11054.

    Article  CAS  Google Scholar 

  27. S. Bodkhe, G. Turcot, F.P. Gosselin, and D. Therriault, One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures, ACS Appl. Mater. Interfaces, 2017, 9(24), p 20833–20842.

    Article  CAS  Google Scholar 

  28. C. Bellehumeur, L. Li, Q. Sun, and P. Gu, Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process, J. Manuf. Process., 2004, 6(2), p 170–178.

    Article  Google Scholar 

  29. H.R. Dana, F. Barbe, L. Delbreilh, M.B. Azzouna, A. Guillet, and T. Breteau, Polymer Additive Manufacturing of ABS Structure: Influence of Printing Direction on Mechanical Properties, J. Manuf. Process., 2019, 44, p 288–298.

    Article  Google Scholar 

  30. A.G. Holmes-Siedle, P.D. Wilson, and A.P. Verrall, PVdF: An Electronically-Active Polymer for Industry, Mater. & Des., 1983, 4(6), p 910–8.

    Article  Google Scholar 

  31. Y.M. Yousry, K. Yao, S. Chen, W.H. Liew, and S. Ramakrishna, Mechanisms for Enhancing Polarization Orientation and Piezoelectric Parameters of PVDF Nanofibers, Adv. Electron. Mater., 2018, 4(6), p 1700562.

    Article  Google Scholar 

  32. N.R. Alluri, B. Saravanakumar, and S.J. Kim, Flexible, Hybrid Piezoelectric Film (BaTi (1–x) Zr x O3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor, ACS Appl. Mater. Interfaces, 2015, 7(18), p 9831–9840.

    Article  CAS  Google Scholar 

  33. S. Tiwari, A. Gaur, C. Kumar, and P. Maiti, Enhanced Piezoelectric Response in Nano Clay Induced Electrospun PVDF Nanofibers for Energy Harvesting, Energy, 2019, 171, p 485–492.

    Article  CAS  Google Scholar 

  34. H. Singh, and N. Khare, Flexible ZnO-PVDF/PTFE Based Piezo-Tribo Hybrid Nanogenerator, Nano Energy, 2018, 51, p 216–222.

    Article  CAS  Google Scholar 

  35. Y. Xin, J. Zhu, H. Sun, Y. Xu, T. Liu, and C. Qian, A Brief Review on Piezoelectric PVDF Nanofibers Prepared by Electrospinning, Ferroelectrics, 2018, 526(1), p 140–151.

    Article  CAS  Google Scholar 

  36. C. Li, P.M. Wu, S. Lee, A. Gorton, M.J. Schulz, and C.H. Ahn, Flexible Dome and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer, J. Microelectromech. Syst., 2008, 17(2), p 334–341.

    Article  CAS  Google Scholar 

  37. F. Mokhtari, M. Latifi, and M. Shamshirsaz, Electrospinning/Electrospray of Polyvinylidene Fluoride (PVDF): Piezoelectric Nanofibers, J. Text. Inst., 2016, 107(8), p 1037–1055.

    CAS  Google Scholar 

  38. S.Y. Nayak, M.T.H. Sultan, S.B. Shenoy, C.R. Kini, R. Samant, Md. Ain Umaira, and P.A. Shah, Potential of Natural Fibers in Composites for Ballistic Applications – A Review, J. Nat. Fibers, 2020, 19(5), p 1648–1658. https://doi.org/10.1080/15440478.2020.1787919

    Article  CAS  Google Scholar 

  39. J. Naveen, M. Jawaid, E.S. Zainudin, M.T.H. Sultan, R. Yahaya, and M.S. Abdul Majid, Thermal Degradation and Viscoelastic Properties of Kevlar/Cocos Nucifera Sheath Reinforced Epoxy Hybrid Composites, Compos. Struct., 2019, 219, p 194–202.

    Article  Google Scholar 

  40. M.T.H. Sultan, K. Worden, W.J. Staszewski, S.G. Pierce, J.M. Duliue-Barton, and A. Hodzic, Impact damage detection and quantification in CFRP laminates: A precursor to machine learning. Structural Health Monitoring 2009: From System Integration to Autonomous Systems-Proceedings of the 7th International Workshop on Structural Health Monitoring, Vol. 2 (IWSHM 2009), p. 1528–1537 (2009).

  41. M.F. Ismail, M.T.H. Sultan, A. Hamdan, A.U.M. Shah, and M. Jawaid, Low-Velocity Impact Behavior and Post-Impact Characteristics of Kenaf/Glass Hybrid Composites with Various Weight Ratios, J. Market. Res., 2019, 8(3), p 2662–2673.

    Google Scholar 

  42. S.N.A. Safri, M.T.H. Sultan, N. Saba, and M. Jawaid, Effect of Benzoyl Treatment on Flexural and Compressive Properties of Sugar Palm/Glass Fibres/Epoxy Hybrid Composites, Polym. Testing, 2018, 71, p 362–369.

    Article  CAS  Google Scholar 

  43. R. Sharma, R. Singh, and A. Batish, On Effect of Chemical-Assisted Mechanical Blending of Barium Titanate and Graphene in PVDF for 3D Printing Applications, J. Thermoplast. Compos. Mater., 2020, 4, p 0892705720945377.

    Google Scholar 

  44. R. Sharma, R. Singh, and A. Batish, On Mechanical and Surface Properties of Electroactive Polymer Matrix-Based 3D Printed Functionally Graded Prototypes, J. Thermoplast. Compos. Mater., 2020, 20, p 0892705720907677.

    Google Scholar 

  45. S. Gupta, L. Lorenzelli, and R. Dahiya, Multifunctional Flexible PVDF-TrFE/BaTiO3 Based Tactile Sensor for Touch and Temperature Monitoring. In 2017 IEEE SENSORS, 2017, p. 1–3.

  46. V. Khurana, R.R. Kisannagar, S.S. Domala, and D. Gupta, In Situ Polarized Ultrathin PVDF Film-Based Flexible Piezoelectric Nanogenerators, ACS Appl. Electron. Mater., 2020, 2(10), p 3409–3417.

    Article  CAS  Google Scholar 

  47. F. Ram, P. Kaviraj, R. Pramanik, A. Krishnan, K. Shanmuganathan, and A. Arockiarajan, PVDF/BaTiO3 Films with Nano Cellulose Impregnation: Investigation of Structural, Morphological and Mechanical Properties, J. Alloy. Compd., 2020, 15(823), 153701.

    Article  Google Scholar 

  48. A. Mayeen, M.S. Kala, S. Sunija, D. Rouxel, R.N. Bhowmik, S. Thomas, and N. Kalarikkal, Flexible Dopamine-Functionalized BaTiO3/BaTiZrO3/BaZrO3-PVDF Ferroelectric Nanofibers for Electrical Energy Storage, J. Alloy. Compd., 2020, 837, 155492.

    Article  CAS  Google Scholar 

  49. H. Kim, T. Fernando, M. Li, Y. Lin, and T.-L.B. Tseng, Fabrication and Characterization of 3D Printed BaTiO3/PVDF Nanocomposites, J. Compos. Mater., 2018, 52(2), p 197–206. https://doi.org/10.1177/0021998317704709

    Article  CAS  Google Scholar 

  50. X. Cai, T. Lei, D. Sun, and L. Lin, A Critical Analysis of the α, β, and γ Phases in Poly (Vinylidene Fluoride) Using FTIR, RSC Adv., 2017, 7(25), p 15382–15389.

    Article  CAS  Google Scholar 

  51. V. Kumar, R. Singh, I.P.S. Ahuja, and J.P. Davim, On Nanographene-Reinforced Polyvinylidene Fluoride Composite Matrix for 4D Applications, J. Mater. Eng. Perform., 2021, 30(7), p 4860–4871.

    Article  CAS  Google Scholar 

  52. R. Kumar, R. Singh, V. Kumar, P. Kumar, C. Prakash, and S. Singh, Characterization of in-House-Developed Mn-ZnO-Reinforced Polyethylene: A Sustainable Approach for Developing Fused Filament Fabrication-Based Filament, J. Mater. Eng. Perform., 2021, 26, p 1–5.

    Google Scholar 

  53. S. Anand Kumar, and Y. Shivraj Narayan, . Tensile testing and evaluation of 3D-printed PLA specimens as per ASTM D638 type IV standard. In Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018) (Springer, Singapore, 2019) p. 79-95.

  54. JM. Clark, Discussion on FRP Design Properties Based on Flexural Tests (ASTM D-790) and Tensile Tests (ASTM D-638). SPI Composites Inst., Vol. 1 (New York, NY (United States), 1996).

  55. R. Barretta, S.A. Fazelzadeh, L. Feo, E. Ghavanloo, and R. Luciano, Nonlocal Inflected Nano-Beams: A Stress-Driven Approach of Bi-Helmholtz Type, Compos. Struct., 2018, 200, p 239–245.

    Article  Google Scholar 

  56. R. Barretta, R. Luciano, and F. Marotti de Sciarra, A Fully Gradient Model For Euler-Bernoulli Nanobeams, Math. Probl. Eng., 2015, 2015, p 495095. https://doi.org/10.1155/2015/495095.

    Article  Google Scholar 

  57. M.T.H. Sultan, K. Worden, S.G. Pierce, D. Hickey, W.J. Staszewski, J.M. Dulieu-Barton, and A. Hodzic, On Impact Damage Detection and Quantification for CFRP Laminates Using Structural Response Data Only, Mech. Syst. Signal Process., 2011, 25(8), p 3135–3152.

    Article  Google Scholar 

  58. P. Zakikhani, R. Zahari, M.T. Sultan, and D.L. Majid, Morphological, Mechanical, and Physical Properties of Four Bamboo Species, BioResources, 2017, 112(2), p 2479–95.

    Google Scholar 

  59. F. Mustapha, K.D. Aris, N.A. Wardi, M.T.H. Sultan, and A. Shahrjerdi, Structural Health Monitoring (SHM) For Composite Structure Undergoing Tensile and Thermal Testing, J. Vibroeng., 2012, 14, p 3.

    Google Scholar 

  60. A.N. Azammi, S.M. Sapuan, M.R. Ishak, and M.T. Sultan, Conceptual Design of Automobile Engine Rubber Mounting Composite Using TRIZ-Morphological Chart-Analytic Network Process Technique, Def. Technol., 2018, 14(4), p 268–277.

    Article  Google Scholar 

  61. G. Chen, X. Lin, J. Li, S. Huang, and X. Cheng, Core-Satellite Ultra-Small Hybrid Ni@ BT Nanoparticles: A New Route to Enhanced Energy Storage Capability of PVDF Based Nanocomposites, Appl. Surf. Sci., 2020, 513, 145877.

    Article  CAS  Google Scholar 

  62. J. Xu, C. Fu, H. Chu, X. Wu, Z. Tan, J. Qian, W. Li, Z. Song, X. Ran, and W. Nie, Enhanced Energy Density of PVDF-Based Nanocomposites via a Core-Shell Strategy, Sci. Rep., 2020, 10(1), p 1–4.

    Article  Google Scholar 

  63. M.T.H. Sultan, K. Worden, S.G. Pierce, D. Hickey, W.J. Staszewski, J.M. Dulieu-Barton, and A. Hodzic, On Impact Damage Detection and Quantification for CFRP Laminates Using Structural Response Data Only, Mech. Syst. Signal, 2011, 25(8), p 3135–3152.

    Article  Google Scholar 

  64. N. Jesuarockiam, M. Jawaid, E.S. Zainudin, M. Thariq Hameed Sultan, and R. Yahaya, Enhanced Thermal and Dynamic Mechanical Properties of Synthetic/Natural Hybrid Composites with Graphene Nanoplateletes, Polymers, 2019, 11(7), p 1085.

    Article  Google Scholar 

  65. S.Y. Nayak, M.T.H. Sultan, S.B. Shenoy, C.R. Kini, R. Samant, A.U.M. Shah, and P. Amuthakkannan, Potential of Natural Fibers in Composites for Ballistic Applications–A Review, J. Nat. Fibers, 2020 https://doi.org/10.1080/15440478.2020.1787919

    Article  Google Scholar 

  66. M.T.H. Sultan, K. Worden, W.J. Staszewski, S.G. Pierce, J.M. Duliue-Barton, and A. Hodzic, Impact Damage Detection and Quantification in CFRP Laminates: A Precursor to Machine Learning. Structural Health Monitoring 2009: From System Integration to Autonomous Systems-Proceedings of the 7th International Workshop on Structural Health Monitoring, Vol 2 IWSHM 2009, p. 1528–1537 (2009).

  67. R. Barretta, R. Luciano, and F. Marotti De Sciarra, A Fully Gradient Model for Euler-Bernoulli Nanobeams, Math. Probl. Eng., 2015 https://doi.org/10.1155/2015/495095

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupinder Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Singh, R., Batish, A. et al. On Mechanical, Thermal, Morphological, and 4D Capabilities of Polyvinylidene Fluoride Nanocomposites: Effect of Mechanical and Chemical-Assisted Mechanical Blending. J. of Materi Eng and Perform 32, 1938–1953 (2023). https://doi.org/10.1007/s11665-022-07199-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07199-0

Keywords

Navigation