Skip to main content
Log in

Advanced rheological and mechanical properties of three-phase polymer nanocomposites through strong interfacial interaction of graphene and titania

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study focused on rheological and mechanical properties of poly(vinylidene fluoride) nanocomposites incorporated with functionalized graphene nanoplatelets and hydroxylated titanium dioxide. Mechanical properties of the ternary composites were improved with a slight reduction in damping coefficient compared to the pure polymer and graphene binary composites. The storage modulus of the ternary composites significantly increased from about 67.5 Pa for the pure polymer to 3.24 × 105 Pa and 3.49 × 105 Pa at 0.1 rad/s for 6.67 wt% graphene composites containing 10 wt% and 20 wt% titania respectively. All ternary composites showed higher tensile strength and Young modulus compared to the pure polymer. Strong bonding between the polymer and co-fillers with a reduction in interfacial slipping in the ternary composites resulted in their lower damping factor and higher strength compared to their counterparts. The composite samples were prepared by solution and melt mixing methods. The scanning electron microscope was used to examine the samples’ morphology and dispersion of the co-fillers in the matrix. Such composites can find applications in automobile and aerospace industries where materials with good strength and noise or vibration absorption capability are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57(7):1061–1105. https://doi.org/10.1016/j.pmatsci.2012.03.002

    Article  Google Scholar 

  2. Huang X, Jiang P, Tanaka T (2011) A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul Mag 27(4):8–16. https://doi.org/10.1109/mei.2011.5954064

    Article  Google Scholar 

  3. Alhusaiki-Alghamdi HM (2017) Thermal and electrical properties of graphene incorporated into polyvinylidene fluoride/polymethyl methacrylate nanocomposites. Polym Compos 38:E246–E253. https://doi.org/10.1002/pc.23997

    Article  Google Scholar 

  4. Li Y, Fan M, Wu K, Yu F, Chai S, Chen F, Fu Q (2015) Polydopamine coating layer on graphene for suppressing loss tangent and enhancing dielectric constant of poly(vinylidene fluoride)/graphene composites. Compos A: Appl Sci Manuf 73:85–92. https://doi.org/10.1016/j.compositesa.2015.02.015

    Article  Google Scholar 

  5. Yang C, Hao S-J, Dai S-L, Zhang X-Y (2017) Nanocomposites of poly(vinylidene fluoride) - controllable hydroxylated/carboxylated graphene with enhanced dielectric performance for large energy density capacitor. Carbon 117:301–312. https://doi.org/10.1016/j.carbon.2017.03.004

    Article  Google Scholar 

  6. He F, Lau S, Chan HL, Fan J (2009) High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv Mater 21(6):710–715. https://doi.org/10.1002/adma.200801758

    Article  Google Scholar 

  7. Guan J, Xing C, Wang Y, Li Y, Li J (2017) Poly (vinylidene fluoride) dielectric composites with both ionic nanoclusters and well dispersed graphene oxide. Compos Sci Technol 138:98–105

    Article  Google Scholar 

  8. Ramanathan T, Liu H, Brinson L (2005) Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J Polym Sci B Polym Phys 43(17):2269–2279

    Article  Google Scholar 

  9. Zhang W-b, Zhang Z-x, Yang J-h, Huang T, Zhang N, Zheng X-t, Wang Y, Zhou Z-w (2015) Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide. Carbon 90:242–254. https://doi.org/10.1016/j.carbon.2015.04.040

    Article  Google Scholar 

  10. Bastiurea M, Rodeanu M, Dima D, Murarescu M, Andrei G (2015) Thermal and mechanical properties of polyester composites with graphene oxide and graphite. Dig J Nanomater Bios (DJNB) 10(2): 521 - 533

  11. Zhang J, Perez RJ, Lavernia EJ (1993) Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials. J Mater Sci 28(9):2395–2404. https://doi.org/10.1007/bf01151671

    Article  Google Scholar 

  12. Shafiei N, Mirjavadi SS, MohaselAfshari B, Rabby S, Kazemi M (2017) Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams. Comput Methods Appl Mech Eng 322:615–632

    Article  MathSciNet  Google Scholar 

  13. Azimi M, Mirjavadi SS, Shafiei N, Hamouda A (2017) Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam. Appl Phys A 123(1):104

    Article  Google Scholar 

  14. Azimi M, Mirjavadi SS, Shafiei N, Hamouda A, Davari E (2018) Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution. Mech Adv Mater Struct 25(6):467–480

    Article  Google Scholar 

  15. Mirjavadi SS, Rabby S, Shafiei N, Afshari BM, Kazemi M (2017) On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment. Appl Phys A 123(5):315

    Article  Google Scholar 

  16. Mirjavadi SS, Mohasel Afshari B, Shafiei N, Rabby S, Kazemi M (2018) Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam. J Vib Control 24(18):4211–4225

    Article  MathSciNet  Google Scholar 

  17. Mirjavadi SS, Afshari BM, Shafiei N, Hamouda A, Kazemi M (2017) Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams. Steel Compos Struct 25(4):415–426

    Google Scholar 

  18. Mirjavadi SS, Afshari BM, Khezel M, Shafiei N, Rabby S, Kordnejad M (2018) Nonlinear vibration and buckling of functionally graded porous nanoscaled beams. J Braz Soc Mech Sci Eng 40(7):352

    Article  Google Scholar 

  19. Mirjavadi SS, Afshari BM, Barati MR, Hamouda A Transient response of porous inhomogeneous nanobeams due to various impulsive loads based on nonlocal strain gradient elasticity. Int J Mech Mater Des 1–12

  20. Mirjavadi SS, Afshari BM, Barati MR, Hamouda A (2019) Nonlinear free and forced vibrations of graphene nanoplatelet reinforced microbeams with geometrical imperfection. Microsyst Technol 1–14

  21. Azimi M, Mirjavadi SS, Hamouda AMS, Makki H (2017) Heterogeneities in polymer structural and dynamic properties in graphene and graphene oxide nanocomposites: molecular dynamics simulations. Macromol Theory Simul 26(2):1600086

    Article  Google Scholar 

  22. Mirjavadi SS, Alipour M, Hamouda A, Kord S, Koppad PG, Abuzin YA, Keshavamurthy R (2018) Effect of hot extrusion and T6 heat treatment on microstructure and mechanical properties of Al-10Zn-3.5 Mg-2.5 Cu nanocomposite reinforced with graphene nanoplatelets. J Manuf Process 36:264–271

    Article  Google Scholar 

  23. Yuan S, Chua CK, Zhou K (2016) Dynamic mechanical behaviors of laser sintered polyurethane incorporated with mwcnts. In: Chua CK, Yeong WY, Tan MJ, Liu E, Tor SB (eds) 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016), Singapore. Research Publishing, Singapore, pp 361–366. https://doi.org/10.3850/2424-8967V02-076

    Chapter  Google Scholar 

  24. Sreenivasan V, Rajini N, Alavudeen A, Arumugaprabu V (2015) Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester composite: effect of fiber length, fiber loading and chemical treatment. Compos Part B 69:76–86

    Article  Google Scholar 

  25. Fidalgo J, Mendes AM, Magalhães FD (2014) Physicomechanical characterization of monodisperse multivesiculated polyester particles. Eur Polym J 58:173–179. https://doi.org/10.1016/j.eurpolymj.2014.06.025

    Article  Google Scholar 

  26. Baran I, Akkerman R, Hattel JH (2014) Material characterization of a polyester resin system for the pultrusion process. Compos Part B 64:194–201. https://doi.org/10.1016/j.compositesb.2014.04.030

    Article  Google Scholar 

  27. Qian X, Song L, Yu B, Yang W, Wang B, Hu Y, Yuen RKK (2014) One-pot surface functionalization and reduction of graphene oxide with long-chain molecules: preparation and its enhancement on the thermal and mechanical properties of polyurea. Chem Eng J 236:233–241. https://doi.org/10.1016/j.cej.2013.09.061

    Article  Google Scholar 

  28. Pothan LA, George CN, John MJ, Thomas S (2010) Dynamic mechanical and dielectric behavior of banana-glass hybrid fiber reinforced polyester composites. J Reinf Plast Compos 29(8):1131–1145

    Article  Google Scholar 

  29. Le MT, Huang SC (2015) Thermal and mechanical behavior of hybrid polymer nanocomposite reinforced with graphene nanoplatelets. Materials (Basel) 8(8):5526–5536. https://doi.org/10.3390/ma8085262

    Article  Google Scholar 

  30. Zhou X, Shin E, Wang K, Bakis C (2004) Interfacial damping characteristics of carbon nanotube-based composites. Compos Sci Technol 64(15):2425–2437

    Article  Google Scholar 

  31. Wang F, Drzal LT, Qin Y, Huang Z (2014) Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50(3):1082–1093. https://doi.org/10.1007/s10853-014-8665-6

    Article  Google Scholar 

  32. Yu C, Li D, Wu W, Luo C, Zhang Y, Pan C (2014) Mechanical property enhancement of PVDF/graphene composite based on a high-quality graphene. J Mater Sci 49(24):8311–8316. https://doi.org/10.1007/s10853-014-8539-y

    Article  Google Scholar 

  33. Kaka D, Rongong J, Hodzic A, Lord C (2014) Dynamic mechanical properties of carbon nanotube-peek nanocomposite. In: 16th European conference on composite materials, Seville, Spain, pp. 22–26

  34. Thomas SP, Rahaman M, Hussein IA (2014) Impact of aspect ratio and CNT loading on the dynamic mechanical and flammability properties of polyethylene nanocomposites. e-Polymers 14(1). https://doi.org/10.1515/epoly-2013-0019

  35. Wang D, Zhou T, Zha J-W, Zhao J, Shi C-Y, Dang Z-M (2013) Functionalized graphene–BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J Mater Chem A 1(20):6162–6168. https://doi.org/10.1039/c3ta10460e

    Article  Google Scholar 

  36. Li Y, Yang W, Gao X, Yu S, Sun R, Wong C-P (2015) Dielectric properties of CVD graphene/BaTiO3/polyvinylidene fluoride nanocomposites fabricated through powder metallurgy. Paper presented at the 2015 16th International Conference on Electronic Packaging Technology

  37. Du M, Wang W, Chen L, Xu Z, Fu H, Ma M (2016) Enhancing dielectric properties of poly(vinylidene fluoride)-based hybrid nanocomposites by synergic employment of hydroxylated BaTiO3and silanized graphene. Polym-Plast Technol Eng 55(15):1595–1603. https://doi.org/10.1080/03602559.2016.1163595

    Article  Google Scholar 

  38. Uyor U, Popoola A, Popoola O, Aigbodion V (2018) Enhanced dielectric performance and energy storage density of polymer/graphene nanocomposites prepared by dual fabrication. J Thermoplast Compos Mater 0892705718805522

  39. Ijadpanah-Saravy H, Safari M, Khodadadi-Darban A, Rezaei A (2014) Synthesis of titanium dioxide nanoparticles for photocatalytic degradation of cyanide in wastewater. Anal Lett 47(10):1772–1782

    Article  Google Scholar 

  40. Wittmar A, Ruiz-Abad D, Ulbricht M (2012) Dispersions of silica nanoparticles in ionic liquids investigated with advanced rheology. J Nanopart Res 14(2):651

    Article  Google Scholar 

Download references

Funding

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Number: 112238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. O. Uyor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uyor, U.O., Popoola, A.P.I., Popoola, O.M. et al. Advanced rheological and mechanical properties of three-phase polymer nanocomposites through strong interfacial interaction of graphene and titania. Int J Adv Manuf Technol 104, 1311–1319 (2019). https://doi.org/10.1007/s00170-019-03999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03999-2

Keywords

Navigation