Skip to main content
Log in

Single-cell transcriptome profiling reveals intra-tumoral heterogeneity in human chordomas

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Chordoma is a rare and aggressive bone tumor. An accurate investigation of tumor heterogeneity is necessary for the development of effective therapeutic strategies. This study aims to assess the poorly understood tumor heterogeneity of chordomas and identify potential therapeutic targets. Single-cell RNA sequencing was performed to delineate the transcriptomic landscape of chordomas. Six tumor samples of chordomas were obtained, and 33,737 cells passed the quality control test and were analyzed. The main cellular populations identified with specific markers were as follows: chordoma cells (16,052 [47.6%]), fibroblasts (6945 [20.6%]), mononuclear phagocytes (4734 [14.0%]), and T/natural killer (NK) cells (3944 [11.7%]). Downstream analysis of each cell type was performed. Six subclusters of chordomas exhibited properties of an epithelial-like extracellular matrix, stem cells, and immunosuppressive activity. Although few immune checkpoints were detected on cytotoxic immune cells such as T and NK cells, a strong immunosuppressive effect was exerted on the Tregs and M2 macrophages. In addition, the cellular interactions were indicative of enhancement of the TGF-β signaling pathway being the main mechanism for tumor progression, invasion, and immunosuppression. These findings, especially from the analysis of molecular targeted therapy and tumor immune microenvironment, may help in the identification of therapeutic targets in chordomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code availability

All scripts used are available at https://github.com/restore1997/chordoma.

References

  1. McMaster ML et al (2001) Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control 12(1):1–11

    Article  CAS  PubMed  Google Scholar 

  2. Walcott BP et al (2012) Chordoma: current concepts, management, and future directions. Lancet Oncol 13(2):e69-76

    Article  PubMed  Google Scholar 

  3. Tarpey PS et al (2017) The driver landscape of sporadic chordoma. Nat Commun 8(1):890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Thanindratarn P et al (2019) Advances in immune checkpoint inhibitors for bone sarcoma therapy. J Bone Oncol 15:100221

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stacchiotti S, Sommer J, Chordoma G (2015) Global consensus, Building a global consensus approach to chordoma: a position paper from the medical and patient community. Lancet Oncol 16(2):71–83

    Article  Google Scholar 

  6. Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15(2):81–94

    Article  CAS  PubMed  Google Scholar 

  7. Meng T et al (2019) Molecular targeted therapy in the treatment of chordoma: a systematic review. Front Oncol 9:30

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bompas E et al (2015) Sorafenib in patients with locally advanced and metastatic chordomas: a phase II trial of the French Sarcoma Group (GSF/GETO). Ann Oncol 26(10):2168–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tawbi HA et al (2017) Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol 18(11):1493–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo M et al (2019) Epigenetic heterogeneity in cancer. Biomark Res 7:23

    Article  PubMed  PubMed Central  Google Scholar 

  11. Potter SS (2018) Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol 14(8):479–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zou MX et al (2019) Clinical impact of the immune microenvironment in spinal chordoma: immunoscore as an independent favorable prognostic factor. Neurosurgery 84(6):E318-e333

    Article  PubMed  Google Scholar 

  13. Morimoto Y et al (2019) Prognostic significance of VEGF receptors expression on the tumor cells in skull base chordoma. J Neuro-oncol 144(1):65–77

    Article  CAS  Google Scholar 

  14. Wang Y et al (2020) Changing technologies of RNA sequencing and their applications in clinical oncology. Front Oncol 10:447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y, Zhang Z (2020) The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol 17(8):807–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neftel C et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178(4):835-849.e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang M et al (2020) Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J Hepatol 73(5):1118–1130

    Article  CAS  PubMed  Google Scholar 

  18. Maynard A et al (2020) Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182(5):1232-1251.e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan XW et al (2020) Identification of a novel cancer stem cell subpopulation that promotes progression of human fatal renal cell carcinoma by single-cell RNA-seq analysis. Int J Biol Sci 16(16):3149–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Puram SV et al (2017) Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171(7):1611-1624.e24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jo VY, Fletcher CD (2014) WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology 46(2):95–104

    Article  CAS  PubMed  Google Scholar 

  22. Wang LM et al (2020) A novel isocitrate dehydrogenase 1 G131D mutation in glioblastoma. Chin Med J (Engl) 134(4):486–488

    Article  Google Scholar 

  23. Stuart T et al (2019) Comprehensive integration of single-cell data. Cell 177(7):1888-1902.e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aran D et al (2019) Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20(2):163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang X et al (2019) Cell Marker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res 47(D1):D721–D728

    Article  CAS  PubMed  Google Scholar 

  26. Yu G et al (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trapnell C et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin S, Guerrero-Juarez CF (2021) Inference and analysis of cell-cell communication using Cell Chat. Nat Commun 12(1):1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng W et al (2019) Application of nomograms to predict overall and cancer-specific survival in patients with chordoma. J Bone Oncol 18:100247

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang R et al (2020) STMN1 upregulation mediates hepatocellular carcinoma and hepatic stellate cell crosstalk to aggravate cancer by triggering the MET pathway. Cancer Sci 111(2):406–417

    Article  CAS  PubMed  Google Scholar 

  31. Obayashi S et al (2017) Stathmin1 expression is associated with aggressive phenotypes and cancer stem cell marker expression in breast cancer patients. Int J Oncol 51(3):781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shuliang S et al (2013) Involvement of ubiquitin-conjugating enzyme E2C in proliferation and invasion of prostate carcinoma cells. Oncol Res 21(3):121–127

    Article  PubMed  CAS  Google Scholar 

  33. Parte S et al (2019) PTTG1: a unique regulator of stem/cancer stem cells in the ovary and ovarian cancer. Stem Cell Rev Rep 15(6):866–879

    Article  CAS  PubMed  Google Scholar 

  34. Huang S et al (2018) Interleukin-6/signal transducer and activator of transcription 3 promotes prostate cancer resistance to androgen deprivation therapy via regulating pituitary tumor transforming gene 1 expression. Cancer Sci 109(3):678–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cottone L et al (2020) Frequent alterations in p16/CDKN2A identified by immunohistochemistry and FISH in chordoma. J Pathol Clin Res 6(2):113–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arora A et al (2020) Pan-cancer identification of clinically relevant genomic subtypes using outcome-weighted integrative clustering. Genome Med 12(1):110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hung YP et al (2020) Dedifferentiated chordoma: clinicopathologic and molecular characteristics with integrative analysis. Am J Surg Pathol 44(9):1213–1223

    Article  PubMed  Google Scholar 

  38. Brandt D, Hedrich CM (2018) TCRαβ(+)CD3(+)CD4(-)CD8(-) (double negative) T cells in autoimmunity. Autoimmun Rev 17(4):422–430

    Article  CAS  PubMed  Google Scholar 

  39. Hwang I et al (2020) Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med 18(1):443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heilmann RM et al (2019) Mucosal expression of S100A12 (calgranulin C) and S100A8/A9 (calprotectin) and correlation with serum and fecal concentrations in dogs with chronic inflammatory enteropathy. Vet Immunol Immunopathol 211:64–74

    Article  CAS  PubMed  Google Scholar 

  41. Nüchel J et al (2018) TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators. Autophagy 14(3):465–486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Derynck R, Turley SJ, Akhurst RJ (2021) TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 18(1):9–34

    Article  PubMed  Google Scholar 

  43. Takeuchi M et al (1997) On the mechanisms by which transforming growth factor-beta 2 alters antigen-presenting abilities of macrophages on T cell activation. Eur J Immunol 27(7):1648–1656

    Article  CAS  PubMed  Google Scholar 

  44. Kobie JJ et al (2003) Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res 63(8):1860–1864

    CAS  PubMed  Google Scholar 

  45. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miettinen PJ et al (1994) TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127(6 Pt 2):2021–2036

    Article  CAS  PubMed  Google Scholar 

  47. Kornberg TB (2017) Distributing signaling proteins in space and time: the province of cytonemes. Curr Opin Genet Dev 45:22–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gulluoglu S et al (2016) The molecular aspects of chordoma. Neurosurg Rev 39(2):185–96

    Article  PubMed  Google Scholar 

  49. Tuysuz EC et al (2019) Distinctive role of dysregulated miRNAs in chordoma cancer stem-like cell maintenance. Exp Cell Res 380(1):9–19

    Article  CAS  PubMed  Google Scholar 

  50. Zou MX et al (2018) Clinicopathologic implications of CD8(+)/Foxp3(+) ratio and miR-574-3p/PD-L1 axis in spinal chordoma patients. Cancer Immunol Immunother 67(2):209–224

    Article  CAS  PubMed  Google Scholar 

  51. Zou MX et al (2019) The relationship between tumor-stroma ratio, the immune microenvironment, and survival in patients with spinal chordoma. Neurosurgery 85(6):E1095-e1110

    Article  PubMed  Google Scholar 

  52. Hildenbrand R et al (1998) Transforming growth factor-beta stimulates urokinase expression in tumor-associated macrophages of the breast. Lab Invest 78(1):59–71

    CAS  PubMed  Google Scholar 

  53. Wei Y et al (2017) Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J Clin Invest 127(10):3675–3688

    Article  PubMed  PubMed Central  Google Scholar 

  54. Correction: (2019) Tumor-secreted LOXL2 activates fibroblasts through FAK signaling. Mol Cancer Res, 17(10): 2141

  55. Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22(5–6):396–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramachandran A et al. (2018) TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. 7

  57. Stadhouders R, Lubberts E, Hendriks RW (2018) A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J Autoimmun 87:1–15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of specific colleagues, institutions, or agencies that aided the authors' efforts.

Funding

CAMS/PUMC Research Project #201920200501, Human Brain Tissue Bank Platform for Neurological Diseases.

Author information

Authors and Affiliations

Authors

Contributions

ZC involved in conception and design; WD and BZ took part in collection and assembly of data; WD and XL involved in data analysis and interpretation; all authors involved in manuscript writing and approval of the manuscript.

Corresponding author

Correspondence to Zan Chen.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

262_2022_3152_MOESM1_ESM.pdf

Fig. S1 Immumohistochemical staining, A Hematoxylin-eosin staining results of chordoma tissues, B Immunohistochemistry of Brachyury staining of chordoma tissues (PDF 891 kb)

262_2022_3152_MOESM2_ESM.pdf

Fig. S2 Quality control process A Violin plots showing cell infiltration using nFeature_RNA, nCount_RNA, and percent_mt, B Dot plots showing the feature-feature relationships (PDF 507 kb)

262_2022_3152_MOESM3_ESM.pdf

Fig. S3 Visualization of all the cells based on sample and site, A UMAP plots of all the cells colored by samples, B UMAP plots of all the cells colored by site, C Bar plots showing the proportion of the identified cell types in various locations (PDF 1186 kb)

262_2022_3152_MOESM4_ESM.pdf

Fig. S4 Supplementary transcriptomic heterogeneity of tumor cells, A UMAP plot of tumor cells colored by samples, B UMAP plot of tumor cells colored by site, C Violin plots showing the expression of the immune checkpoints, D Bar plots showing the functional enrichment analysis of GO terms for each cluster of tumor cells, E Violin plots showing the expression of CDKN2A, F The ordering of tumor cells along pseudotime in a two-dimensional state space (colored by pseudotime), GO, Gene Ontology (PDF 1660 kb)

262_2022_3152_MOESM5_ESM.pdf

Fig. S5 Clustering and subtype analysis of supplementary T and NK cells, A UMAP plots of T and NK cells colored by samples, B UMAP plots of T and NK cells colored by site (PDF 5298 kb)

262_2022_3152_MOESM6_ESM.pdf

Fig. S6 The significant signaling pathways in the interplay between distinct cells, A The alluvial plot showing the outgoing (left) and incoming (right) signaling patterns of distinct cells, B Circle plot showing the significant inferred signaling networks (PDF 3809 kb)

Supplementary file7 (PDF 21 kb)

Supplementary file8 (PDF 9524 kb)

Supplementary file9 (PDF 366 kb)

Supplementary file10 (PDF 260 kb)

Supplementary file11 (PDF 544 kb)

Supplementary file12 (PDF 630 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, W., Zhang, B., Li, X. et al. Single-cell transcriptome profiling reveals intra-tumoral heterogeneity in human chordomas. Cancer Immunol Immunother 71, 2185–2195 (2022). https://doi.org/10.1007/s00262-022-03152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03152-1

Keywords

Navigation