Skip to main content

Advertisement

Log in

Prognostic significance of VEGF receptors expression on the tumor cells in skull base chordoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

Chordoma is a rare refractory neoplasm that arises from the embryological remnants of the notochord, which is incurable using any multimodality therapy. Vascular endothelial growth factor (VEGF) is a potent activator of angiogenesis that is strongly associated with the tumor-immune microenvironment. These factors have not been elucidated for chordomas.

Methods

To evaluate the characteristics of vascular and tumor cells in chordoma, we first analyzed the expression of VEGF receptor (VEGFR) 1, VEGFR2, CD34, and Brachyury in a cell line and 54 tumor tissues. Patients with primary skull base chordomas were divided into the following two groups as per the tumor growth rate: patients with slow progression (SP: < 3 mm/year) and those with rapid progression (RP: ≥ 3 mm/year). Thus, the expressions of VEGF-A, VEGFR 1, and VEGFR2 on tumor cells; tumor infiltrative immune cells, including regulatory T cells (Tregs) and tumor-associated macrophages (TAMs); and immune-checkpoint molecules (PD-1/PD-L1) were analyzed with the clinical courses, especially in a comparison between the two groups.

Results

In chordomas, both VEGFR1 and VEGFR2 were strongly expressed not only on vascular endothelial cells, but also on tumor cells. The recurrent cases showed significantly higher VEGFR1 expressions on tumor cells than the primary cases. The expression of VEGF-A was significantly higher in RP than that in SP group. The numbers of CD163+ TAMs and Foxp3+ Tregs were higher in RP than that in SP group.

Conclusions

Expression of VEGFR1 and VEGFR2 on tumor cells and immunosuppressive tumor-microenvironment were related to tumor growth in patients with chordomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  CAS  PubMed  Google Scholar 

  2. Otero JE, Stevens JW, Malandra AE, Fredericks DC, Odgren PR, Buckwalter JA, Morcuende J (2014) Osteoclast inhibition impairs chondrosarcoma growth and bone destruction. J Orthop Res 32:1562–1571

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi S, Kawase T, Yoshida K, Hasegawa A, Mizoe JE (2009) Skull base chordomas: efficacy of surgery followed by carbon ion radiotherapy. Acta Neurochir (Wien) 151:759–769

    Article  Google Scholar 

  4. Hug EB, Loredo LN, Slater JD, DeVries A, Grove RI, Schaefer RA, Rosenberg AE, Slater JM (1999) Proton radiation therapy for chordomas and chondrosarcomas of the skull base. J Neurosurg 91:432–439

    Article  CAS  PubMed  Google Scholar 

  5. Hug EB (2001) Review of skull base chordomas: prognostic factors and long-term results of proton-beam radiotherapy. Neurosurg Focus 10:E11

    Article  CAS  PubMed  Google Scholar 

  6. McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM (2001) Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control 12:1–11

    Article  CAS  PubMed  Google Scholar 

  7. Sundaresan N, Galicich JH, Chu FC, Huvos AG (1997) Spinal chordomas. J Neurosurg 50:312–319

    Article  Google Scholar 

  8. Bakker SH, Jacobs WCH, Pondaag W, Gelderblom H, Nout RA, Dijkstra PDS, Peul WC, Vleggeert-Lankamp CLA (2018) Chordoma: a systematic review of the epidemiology and clinical prognostic factors predicting progression-free and overall survival. Eur Spine J 27:3043–3058

    Article  CAS  PubMed  Google Scholar 

  9. Bergh P, Kindblom LG, Gunterberg B, Remotti F, Ryd W, Meis-Kindblom JM (2000) Prognostic factors in chordoma of the sacrum and mobile spine: a study of 39 patients. Cancer 88:2122–2134

    Article  CAS  PubMed  Google Scholar 

  10. Leah P, Dower A, Vescovi C, Mulcahy M, Al Khawaja D (2018) Clinical experience of intracranial chordoma: a systematic review and meta-analysis of the literature. J Clin Neurosci 53:6–12

    Article  CAS  PubMed  Google Scholar 

  11. Zhou Y, Hu B, Wu Z, Cheng H, Dai M, Zhang B (2018) Clival chordoma: long-term clinical outcome in a single center. Medicine (Baltimore) 97:e12207

    Article  Google Scholar 

  12. Zou MX, Lv GH, Zhang QS, Wang SF, Li J, Wang XB (2018) Prognostic factors in skull base chordoma: a systematic literature review and meta-analysis. World Neurosurg 109:307–327

    Article  PubMed  Google Scholar 

  13. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622

    Article  CAS  PubMed  Google Scholar 

  14. Tamura R, Tanaka T, Miyake K, Yoshida K, Sasaki H (2017) Bevacizumab for malignant gliomas: current indications, mechanisms of action and resistance, and markers of response. Brain Tumor Pathol 34:62–77

    Article  CAS  PubMed  Google Scholar 

  15. Chen KW, Yang HL, Lu J, Wang GL, Ji YM, Wu GZ, Zhu LF, Liu JY, Chen XQ, Gu YP (2011) Expression of vascular endothelial growth factor and matrix metalloproteinase-9 in sacral chordoma. J Neurooncol 101:357–363

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Ji Z, Ma Y, Qiu X, Fan Q, Ma B (2012) Expression of hypoxia-inducible factor-1α, vascular endothelial growth factor and matrix metalloproteinase-2 in sacral chordomas. Oncol Lett 3:1268–1274

    Article  PubMed  PubMed Central  Google Scholar 

  17. Asklund T, Sandström M, Shahidi S, Riklund K, Henriksson R (2014) Durable stabilization of three chordoma cases by bevacizumab and erlotinib. Acta Oncol 53:980–984

    Article  CAS  PubMed  Google Scholar 

  18. Lebellec L, Bertucci F, Tresch-Bruneel E, Bompas E, Toiron Y, Camoin L, Mir O, Laurence V, Clisant S, Decoupigny E, Blay JY, Goncalves A, Penel N (2016) Circulating vascular endothelial growth factor (VEGF) as predictive factor of progression-free survival in patients with advanced chordoma receiving sorafenib: an analysis from a phase II trial of the French sarcoma group (GSF/GETO). Oncotarget 7:73984–73994

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yuan Y, Jiang YC, Sun CK, Chen QM (2016) Role of the tumor microenvironment in tumor progression and the clinical applications (review). Oncol Rep 35:2499–2515

    Article  CAS  PubMed  Google Scholar 

  20. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103

    Article  CAS  PubMed  Google Scholar 

  21. Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, Carbone DP (2003) VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101:4878–4886

    Article  CAS  PubMed  Google Scholar 

  22. Weis SM, Cheresh DA (2005) Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437:497–504

    Article  CAS  PubMed  Google Scholar 

  23. Zou MX, Lv GH, Wang XB, Huang W, Li J, Jiang Y, She XL (2018) Clinical impact of the immune microenvironment in spinal chordoma: immunoscore as an independent favorable prognostic factor. Neurosurgery 84:E318–E333

    Google Scholar 

  24. Di Maio S, Yip S, Al Zhrani GA, Alotaibi FE, Al Turki A, Kong E, Rostomily RC (2015) Novel targeted therapies in chordoma: an update. Ther Clin Risk Manag 11:873–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patel SS, Schwab JH (2016) Immunotherapy as a potential treatment for chordoma: a review. Curr Oncol Rep 18:55

    Article  CAS  PubMed  Google Scholar 

  26. Heery CR, Singh BH, Rauckhorst M, Marté JL, Donahue RN, Grenga I, Rodell TC, Dahut W, Arlen PM, Madan RA, Schlom J, Gulley JL (2015) Phase I trial of a yeast-based therapeutic cancer vaccine (GI-6301) targeting the transcription factor brachyury. Cancer Immunol Res 3:1248–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tamura R, Tanaka T, Miyake K, Tabei Y, Ohara K, Sampetrean O, Kono M, Mizutani K, Yamamoto Y, Murayama Y, Tamiya T, Yoshida K, Sasaki H (2016) Histopathological investigation of glioblastomas resected under bevacizumab treatment. Oncotarget 7:52423–52435

    PubMed  PubMed Central  Google Scholar 

  28. Tamura R, Ohara K, Sasaki H, Morimoto Y, Yoshida K, Toda M (2018) Histopathological vascular investigation of the peritumoral brain zone of glioblastomas. J Neurooncol 136:233–241

    Article  CAS  PubMed  Google Scholar 

  29. Tamura R, Ohara K, Sasaki H, Morimoto Y, Kosugi K, Yoshida K, Toda M (2018) Difference in immunosuppressive cells between peritumoral area and tumor core in glioblastoma. World Neurosurg 120:e601–e610

    Article  PubMed  Google Scholar 

  30. Stacchiotti S, Tamborini E, Lo Vullo S, Bozzi F, Messina A, Morosi C, Casale A, Crippa F, Conca E, Negri T, Palassini E, Marrari A, Palmerini E, Mariani L, Gronchi A, Pilotti S, Casali PG (2013) Phase II study on lapatinib in advanced EGFR-positive chordoma. Ann Oncol 24:1931–1963

    Article  CAS  PubMed  Google Scholar 

  31. Zou MX, Guo KM, Lv GH, Huang W, Li J, Wang XB, Jiang Y, She XL (2018) Clinicopathologic implications of CD8+ /Foxp3+  ratio and miR-574-3p/PD-L1 axis in spinal chordoma patients. Cancer Immunol Immunother 67:209–224

    Article  CAS  PubMed  Google Scholar 

  32. Chaudhry IH, O'Donovan DG, Brenchley PE, Reid H, Roberts IS (2001) Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas. Histopathology 39:409–415

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt NO, Westphal M, Hagel C, Ergün S, Stavrou D, Rosen EM, Lamszus K (1999) Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 84:10–18

    Article  CAS  PubMed  Google Scholar 

  34. Tauziéde-Espariat A, Bresson D, Polivka M, Bouazza S, Labrousse F, Aronica E, Pretet JL, Projetti F, Herman P, Salle H, Monnien F, Valmary-Degano S, Laquerrière A, Pocard M, Chaigneau L, Isambert N, Aubriot-Lorton MH, Feuvret L, George B, Froelich S, Adle-Biassette H (2016) Prognostic and therapeutic markers in chordomas: a study of 287 tumors. J Neuropathol Exp Neurol 75:111–120

    Article  CAS  PubMed  Google Scholar 

  35. Lin C, McGough R, Aswad B, Block JA, Terek R (2004) Hypoxia induces HIF-1alpha and VEGF expression in chondrosarcoma cells and chondrocytes. J Orthop Res 22:1175–1181

    Article  CAS  PubMed  Google Scholar 

  36. Liang D, Chang JR, Chin AJ, Smith A, Kelly C, Weinberg ES, Ge R (2001) The role of vascular endothelial growth factor (VEGF) in vasculogenesis, angiogenesis, and hematopoiesis in zebrafish development. Mech Dev 108:29–43

    Article  CAS  PubMed  Google Scholar 

  37. Sumoy L, Keasey JB, Dittman TD, Kimelman D (1997) A role for notochord in axial vascular development revealed by analysis of phenotype and the expression of VEGR-2 in zebrafish flh and ntl mutant embryos. Mech Dev 63:15–27

    Article  CAS  PubMed  Google Scholar 

  38. Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13:871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Holzer TR, Fulford AD, Nedderman DM, Umberger TS, Hozak RR, Joshi A, Melemed SA, Benjamin LE, Plowman GD, Schade AE, Ackermann BL, Konrad RJ, Nasir A (2013) Tumor cell expression of vascular endothelial growth factor receptor 2 is an adverse prognostic factor in patients with squamous cell carcinoma of the lung. PLoS ONE 8:e80292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lalla RV, Boisoneau DS, Spiro JD, Kreutzer DL (2003) Expression of vascular endothelial growth factor receptors on tumor cells in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 129:882–888

    Article  PubMed  Google Scholar 

  41. Masood R, Cai J, Zheng T, Smith DL, Hinton DR, Gill PS (2001) Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood 98:1904–1913

    Article  CAS  PubMed  Google Scholar 

  42. Strizzi L, Catalano A, Vianale G, Orecchia S, Casalini A, Tassi G, Puntoni R, Mutti L, Procopio A. (2001) Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J Pathol 193:468-475

    Article  CAS  PubMed  Google Scholar 

  43. Jackson MW, Roberts JS, Heckford SE, Ricciardelli C, Stahl J, Choong C, Horsfall DJ, Tilley WD (2002) A potential autocrine role for vascular endothelial growth factor in prostate cancer. Cancer Res 62:854–859

    CAS  PubMed  Google Scholar 

  44. Mentlein R, Forstreuter F, Mehdorn HM, Held-Feindt J (2004) Functional significance of vascular endothelial growth factor receptor expression on human glioma cells. J Neurooncol 67:9–18

    Article  PubMed  Google Scholar 

  45. Price DJ, Miralem T, Jiang S, Steinberg R, Avraham H (2001) Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ 12:129–135

    CAS  PubMed  Google Scholar 

  46. Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M, Moudry P, Bartek J Jr, Fischer W, Lukas J, Rich JN, Bartek J (2012) Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 209:507–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, Xiong W, Li G, Zeng Z, Guo C (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8:761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu W, Yu J, Huang Y, Hu F, Zhang X, Wang Y (2018) Lymphocyte-related inflammation and immune-based scores predict prognosis of chordoma patients after radical resection. Transl Oncol 11:444–449

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tamura R, Tanaka T, Yamamoto Y, Akasaki Y, Sasaki H (2018) Dual role of macrophage in tumor immunity. Immunotherapy 10:899–909

    Article  CAS  PubMed  Google Scholar 

  51. Guadagno E, Presta I, Maisano D, Donato A, Pirrone CK, Cardillo G, Corrado SD, Mignogna C, Mancuso T, Donato G, Del Basso De Caro, M, Malara N, (2018) Role of Macrophages in Brain Tumor Growth and Progression. Int J Mol Sci 27:E1005

    Article  CAS  Google Scholar 

  52. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hamilton A, Sibson NR (2013) Role of the systemic immune system in brain metastasis. Mol Cell Neurosci 53:42–51

    Article  CAS  PubMed  Google Scholar 

  54. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wada J, Yamasaki A, Nagai S, Yanai K, Fuchino K, Kameda C, Tanaka H, Koga K, Nakashima H, Nakamura M, Tanaka M, Katano M, Morisaki T (2008) Regulatory T-cells are possible effect prediction markers of immunotherapy for cancer patients. Anticancer Res 28:2401–2408

    CAS  PubMed  Google Scholar 

  56. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  57. Asklund T, Malmström A, Björ O, Blomquist E, Henriksson R (2013) Considerable improvement in survival for patients aged 60–84 years with high grade malignant gliomas—data from the Swedish Brain Tumour Population-based Registry. Acta Oncol 52:1041–1043

    Article  PubMed  Google Scholar 

  58. Suzuki H, Onishi H, Wada J, Yamasaki A, Tanaka H, Nakano K, Morisaki T, Katano M (2010) VEGFR2 is selectively expressed by FOXP3high CD4+ Treg. Eur J Immunol 40:197–203

    Article  CAS  PubMed  Google Scholar 

  59. Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, Dubreuil O, Carpentier AF, Tartour E, Taieb J (2013) VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res 73:539–549

    Article  CAS  PubMed  Google Scholar 

  60. Xue S, Song G, Yu J (2017) The prognostic significance of PD-L1 expression in patients with glioma: A meta-analysis. Sci Rep 7:4231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mathios D, Ruzevick J, Jackson CM, Xu H, Shah SR, Taube JM, Burger PC, McCarthy EF, Quinones-Hinojosa A, Pardoll DM, Lim M (2015) PD-1, PD-L1, PD-L2 expression in the chordoma microenvironment. J Neurooncol 121:251–259

    Article  CAS  PubMed  Google Scholar 

  62. Zou MX, Peng AB, Lv GH, Wang XB, Li J, She XL, Jiang Y (2016) Expression of programmed death-1 ligand (PD-L1) in tumor-infiltrating lymphocytes is associated with favorable spinal chordoma prognosis. Am J Transl Res 8:3274–3287

    CAS  PubMed  PubMed Central  Google Scholar 

  63. He J, Hu Y, Hu M, Li B (2015) Development of PD-1/PD-L1 Pathway in Tumor Immune Microenvironment and Treatment for Non-Small Cell Lung Cancer. Sci Rep 5:13110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, Latreche S, Bergaya S, Benhamouda N, Tanchot C, Stockmann C, Combe P, Berger A, Zinzindohoue F, Yagita H, Tartour E, Taieb J, Terme M (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 212:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xue S, Hu M, Li P, Ma J, Xie L, Teng F, Zhu Y, Fan B, Mu D, Yu J (2017) Relationship between expression of PD-L1 and tumor angiogenesis, proliferation, and invasion in glioma. Oncotarget 8:49702–49712

    PubMed  PubMed Central  Google Scholar 

  66. Eriksson B, Gunterberg B, Kindblom LG: Chordoma, (1981) A clinicopathologic and prognostic study of a Swedish national series. Acta Orthop Scand 52:49–58

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly thank Ms. Naoko Tsuzaki in the department of Neurosurgery for technical assistance of laboratory works.

Funding

This work was supported in part by grants from the Japan Society for the Promotion of Science (JSPS) (17H04306 to M.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Toda.

Ethics declarations

Conflict of interest

All authors declare nothing to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morimoto, Y., Tamura, R., Ohara, K. et al. Prognostic significance of VEGF receptors expression on the tumor cells in skull base chordoma. J Neurooncol 144, 65–77 (2019). https://doi.org/10.1007/s11060-019-03221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-019-03221-z

Keywords

Navigation