Skip to main content
Log in

[18F] AlF-NOTA-FAPI-04 PET/CT can predict treatment response and survival in patients receiving chemotherapy for inoperable pancreatic ductal adenocarcinoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We investigated whether uptake of [18F] AlF-NOTA-FAPI-04 on positron emission tomography/computed tomography (PET/CT) could predict treatment response and survival in patients with pancreatic ductal adenocarcinoma (PDAC).

Methods

We prospectively evaluated 47 patients with histopathologically confirmed primary PDAC who provided pretreatment [18F] AlF-NOTA-FAPI-04 scans to detect fibroblast activation protein (FAP) on the tumor surface by uptake of [18F] AlF-NOTA-FAPI-04. PDAC specimens were immunohistochemically stained with cancer-associated fibroblast (CAF) markers. We obtained a second PET scan after one cycle of chemotherapy to study changes in FAPI uptake variables from before to during treatment. Correlations between baseline PET variables and CAF-related immunohistochemical markers were assessed with Spearman’s rank test. Cox regression and Kaplan–Meier methods were used to assess relationships between disease progression and potential predictors. Receiver operating characteristic (ROC) curve analysis was used to define the optimal cut-off points for distinguishing patients according to good response vs. poor response per RECIST v.1.1.

Results

The FAPI PET variables maximum and mean standardized uptake values (SUVmax, SUVmean), metabolic tumor volume (MTV), and total lesion FAP expression (TLF) were positively correlated with CAF markers (FAP, α-smooth muscle actin, vimentin, S100A4, and platelet-derived growth factor receptor α/β, all P < 0.05). MTV was associated with survival in patients with inoperable PDAC (all P < 0.05). Cox multivariate regression showed that MTV was associated with overall survival (MTV hazard ratio [HR] = 1.016, P = 0.016). Greater changes from before to during chemotherapy in SUVmax, MTV, and TLF were associated with good treatment response (all P < 0.05). ΔMTV, ΔTLF, and ΔSUVmax had larger areas under the curve than ΔCA19-9 for predicting treatment response. Kaplan–Meier analysis showed that the extent of change in MTV and TLF from before to after treatment predicted progression-free survival, with cut-off values (based on medians) of − 4.95 for ΔMTV (HR = 8.09, P = 0.013) and − 77.83 for ΔTLF (HR = 4.62, P = 0.012).

Conclusions

A higher baseline MTV on [18F] AlF-NOTA-FAPI-04 scans was associated with poorer survival in patients with inoperable PDAC. ΔMTV was more sensitive for predicting response than ΔCA19-9. These results are clinically meaningful for identifying patients with PDAC who are at high risk of disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

All software applications or custom code are available in the public repository.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics. CA: Cancer J Clin. 2023;73:17–48. https://doi.org/10.3322/caac.21763.

    Article  PubMed  Google Scholar 

  2. Rahib L, Wehner MR, Matrisian LM, Nead KT. Estimated projection of US cancer incidence and death to 2040. JAMA Netw Open. 2021;4:e214708. https://doi.org/10.1001/jamanetworkopen.2021.4708.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ko AH, Hwang J, Venook AP, Abbruzzese JL, Bergsland EK, Tempero MA. Serum CA19-9 response as a surrogate for clinical outcome in patients receiving fixed-dose rate gemcitabine for advanced pancreatic cancer. Br J Cancer. 2005;93:195–9. https://doi.org/10.1038/sj.bjc.6602687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Humphris JL, Chang DK, Johns AL, Scarlett CJ, Pajic M, Jones MD, et al. The prognostic and predictive value of serum CA19.9 in pancreatic cancer. Ann Oncol. 2012;23:1713–22. https://doi.org/10.1093/annonc/mdr561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maisey NR, Norman AR, Hill A, Massey A, Oates J, Cunningham D. CA19-9 as a prognostic factor in inoperable pancreatic cancer: the implication for clinical trials. Br J Cancer. 2005;93:740–3. https://doi.org/10.1038/sj.bjc.6602760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kondo N, Murakami Y, Uemura K, Hayashidani Y, Sudo T, Hashimoto Y, et al. Prognostic impact of perioperative serum CA 19–9 levels in patients with resectable pancreatic cancer. Ann Surg Oncol. 2010;17:2321–9. https://doi.org/10.1245/s10434-010-1033-0.

    Article  PubMed  Google Scholar 

  7. Dumitra S, Jamal MH, Aboukhalil J, Doi SA, Chaudhury P, Hassanain M, et al. Pancreatic cancer and predictors of survival: comparing the CA 19–9/bilirubin ratio with the McGill Brisbane Symptom Score. HPB. 2013;15:1002–9. https://doi.org/10.1111/hpb.12085.

    Article  PubMed  PubMed Central  Google Scholar 

  8. La Greca G, Sofia M, Lombardo R, Latteri S, Ricotta A, Puleo S, et al. Adjusting CA19-9 values to predict malignancy in obstructive jaundice: influence of bilirubin and C-reactive protein. World J Gastroenterol. 2012;18:4150–5. https://doi.org/10.3748/wjg.v18.i31.4150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang L, Sanagapalli S, Stoita A. Challenges in diagnosis of pancreatic cancer. World J Gastroenterol. 2018;24:2047–60. https://doi.org/10.3748/wjg.v24.i19.2047.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Strobel O, Büchler MW. Pancreatic cancer: FDG-PET is not useful in early pancreatic cancer diagnosis. Nat Rev Gastroenterol Hepatol. 2013;10:203–5. https://doi.org/10.1038/nrgastro.2013.42.

    Article  CAS  PubMed  Google Scholar 

  11. Jha P, Bijan B. PET/CT for pancreatic malignancy: potential and pitfalls. J Nucl Med Technol. 2015;43:92–7. https://doi.org/10.2967/jnmt.114.145458.

    Article  PubMed  Google Scholar 

  12. Koustoulidou S, Hoorens MWH, Dalm SU, Mahajan S, Debets R, Seimbille Y, et al. Cancer-associated fibroblasts as players in cancer development and progression and their role in targeted radionuclide imaging and therapy. Cancers. 2021;13. https://doi.org/10.3390/cancers13051100.

  13. de Sostoa J, Fajardo CA, Moreno R, Ramos MD, Farrera-Sal M, Alemany R. Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager. J Immunother Cancer. 2019;7:19. https://doi.org/10.1186/s40425-019-0505-4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Christiansen VJ, Jackson KW, Lee KN, Downs TD, McKee PA. Targeting inhibition of fibroblast activation protein-α and prolyl oligopeptidase activities on cells common to metastatic tumor microenvironments. Neoplasia (New York, NY). 2013;15:348–58. https://doi.org/10.1593/neo.121850.

    Article  CAS  Google Scholar 

  15. Li Z, Sun C, Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics. 2021;11:8322–36. https://doi.org/10.7150/thno.62378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Šimková A, Bušek P, Šedo A, Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. Biochimica et Biophysica Acta Proteins and Proteomics. 2020;1868:140409. https://doi.org/10.1016/j.bbapap.2020.140409.

    Article  CAS  PubMed  Google Scholar 

  17. Mazur A, Holthoff E, Vadali S, Kelly T, Post SR. Cleavage of type I collagen by fibroblast activation protein-α enhances class A scavenger receptor mediated macrophage adhesion. PloS one. 2016;11:e0150287. https://doi.org/10.1371/journal.pone.0150287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Puré E, Blomberg R. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene. 2018;37:4343–57. https://doi.org/10.1038/s41388-018-0275-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol. 2020;17:487–505. https://doi.org/10.1038/s41575-020-0300-1.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liermann J, Syed M, Ben-Josef E, Schubert K, Schlampp I, Sprengel SD, et al. Impact of FAPI-PET/CT on target volume definition in radiation therapy of locally recurrent pancreatic cancer. Cancers. 2021;13. https://doi.org/10.3390/cancers13040796.

  21. Wei Y, Cheng K, Fu Z, Zheng J, Mu Z, Zhao C, et al. [(18)F]AlF-NOTA-FAPI-04 PET/CT uptake in metastatic lesions on PET/CT imaging might distinguish different pathological types of lung cancer. Eur J Nucl Med Mol Imaging. 2022;49:1671–81. https://doi.org/10.1007/s00259-021-05638-z.

    Article  CAS  PubMed  Google Scholar 

  22. Thuillier P, Maajem M, Schick U, Blanc-Beguin F, Hennebicq S, Metges JP, et al. Clinical Assessment of 177Lu-DOTATATE quantification by comparison of SUV-based parameters measured on both post-PRRT SPECT/CT and 68Ga-DOTATOC PET/CT in patients with neuroendocrine tumors: a feasibility study. Clin Nucl Med. 2021;46:111–8. https://doi.org/10.1097/rlu.0000000000003412.

    Article  PubMed  Google Scholar 

  23. Hu X, Zhou T, Ren J, Duan J, Wu H, Liu X, et al. Response prediction using (18)F-FAPI-04 PET/CT in patients with esophageal squamous cell carcinoma treated with concurrent chemoradiotherapy. J Nucl Med. 2022. https://doi.org/10.2967/jnumed.122.264638.

  24. Ren B, Cui M, Yang G, Wang H, Feng M, You L, et al. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer. 2018;17:108. https://doi.org/10.1186/s12943-018-0858-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Melucci AD, Chacon AC, Burchard PR, Tsagkalidis V, Casabianca AS, Goyal S, et al. The impact of carbohydrate antigen 19–9 on survival in patients with clinical stage I and II pancreatic cancer. Ann Surg Oncol. 2022;29:8536–47. https://doi.org/10.1245/s10434-022-12497-x.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Halm U, Schumann T, Schiefke I, Witzigmann H, Mössner J, Keim V. Decrease of CA 19–9 during chemotherapy with gemcitabine predicts survival time in patients with advanced pancreatic cancer. Br J Cancer. 2000;82:1013–6. https://doi.org/10.1054/bjoc.1999.1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi M, Yu DH, Chen Y, Zhao CY, Zhang J, Liu QH, et al. Expression of fibroblast activation protein in human pancreatic adenocarcinoma and its clinicopathological significance. World J Gastroenterol. 2012;18:840–6. https://doi.org/10.3748/wjg.v18.i8.840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. MacNeil T, Vathiotis IA, Shafi S, Aung TN, Zugazagoitia J, Gruver AM, et al. Multiplex quantitative analysis of tumor-infiltrating lymphocytes, cancer-associated fibroblasts, and CD200 in pancreatic cancer. Cancers. 2021;13. https://doi.org/10.3390/cancers13215501.

  29. Kaghazchi F, Divband G, Amini H, Adinehpour Z, Akbarian AR. 68 Ga-FAPI-46 and 18 F-FDG in advanced metastatic pancreatic cancer. Clin Nucl Med. 2022;47:e666–9. https://doi.org/10.1097/RLU.0000000000004316.

    Article  PubMed  Google Scholar 

  30. Zhang Z, Jia G, Pan G, Cao K, Yang Q, Meng H, et al. Comparison of the diagnostic efficacy of (68) Ga-FAPI-04 PET/MR and (18)F-FDG PET/CT in patients with pancreatic cancer. Eur J Nucl Med Mol Imaging. 2022;49:2877–88. https://doi.org/10.1007/s00259-022-05729-5.

    Article  CAS  PubMed  Google Scholar 

  31. McBride WJ, Sharkey RM, Karacay H, D’Souza CA, Rossi EA, Laverman P, et al. A novel method of 18F radiolabeling for PET. J Nucl Med. 2009;50:991–8. https://doi.org/10.2967/jnumed.108.060418.

    Article  CAS  PubMed  Google Scholar 

  32. D’Souza CA, McBride WJ, Sharkey RM, Todaro LJ, Goldenberg DM. High-yielding aqueous 18F-labeling of peptides via Al18F chelation. Bioconjug Chem. 2011;22:1793–803. https://doi.org/10.1021/bc200175c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mona CE, Benz MR, Hikmat F, Grogan TR, Lückerath K, Razmaria A, et al. Correlation of (68)Ga-FAPi-46 PET biodistribution with FAP expression by immunohistochemistry in patients with solid cancers: a prospective translational exploratory study. J Nucl Med. 2021. https://doi.org/10.2967/jnumed.121.262426.

  34. Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Cancer. 2022;22:131–42. https://doi.org/10.1038/s41568-021-00418-1.

    Article  CAS  PubMed  Google Scholar 

  35. Wikberg ML, Edin S, Lundberg IV, Van Guelpen B, Dahlin AM, Rutegård J, et al. High intratumoral expression of fibroblast activation protein (FAP) in colon cancer is associated with poorer patient prognosis. Tumour Biol. 2013;34:1013–20. https://doi.org/10.1007/s13277-012-0638-2.

    Article  CAS  PubMed  Google Scholar 

  36. Friemel J, Rechsteiner M, Frick L, Böhm F, Struckmann K, Egger M, et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res. 2015;21:1951–61. https://doi.org/10.1158/1078-0432.Ccr-14-0122.

    Article  CAS  PubMed  Google Scholar 

  37. Oramas DM, Moran CA. Thymoma: challenges and pitfalls in biopsy interpretation. Adv Anat Pathol. 2021;28:291–7. https://doi.org/10.1097/pap.0000000000000310.

    Article  CAS  PubMed  Google Scholar 

  38. Mona CE, Benz MR, Hikmat F, Grogan TR, Lueckerath K, Razmaria A, et al. Correlation of (68)Ga-FAPi-46 PET Biodistribution with FAP expression by immunohistochemistry in patients with solid cancers: interim analysis of a prospective translational exploratory study. J Nucl Med. 2022;63:1021–6. https://doi.org/10.2967/jnumed.121.262426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Troost EG, Bussink J, Slootweg PJ, Peeters WJ, Merkx MA, van der Kogel AJ, et al. Histopathologic validation of 3’-deoxy-3’-18F-fluorothymidine PET in squamous cell carcinoma of the oral cavity. J Nucl Med. 2010;51:713–9. https://doi.org/10.2967/jnumed.109.071910.

    Article  PubMed  Google Scholar 

  40. Kaps L, Schuppan D. Targeting cancer associated fibroblasts in liver fibrosis and liver cancer using nanocarriers. Cells. 2020;9. https://doi.org/10.3390/cells9092027.

  41. Klinkhammer BM, Floege J, Boor P. PDGF in organ fibrosis. Mol Aspects Med. 2018;62:44–62. https://doi.org/10.1016/j.mam.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  42. Kuburich NA, den Hollander P, Pietz JT, Mani SA. Vimentin and cytokeratin: good alone, bad together. Semin Cancer Biol. 2022;86:816–26. https://doi.org/10.1016/j.semcancer.2021.12.006.

    Article  CAS  PubMed  Google Scholar 

  43. D’Ambrosi N, Milani M, Apolloni S. S100A4 in the physiology and pathology of the central and peripheral nervous system. Cells. 2021;10. https://doi.org/10.3390/cells10040798.

  44. Li Z, Li Y, Liu S, Qin Z. Extracellular S100A4 as a key player in fibrotic diseases. J Cell Mol Med. 2020;24:5973–83. https://doi.org/10.1111/jcmm.15259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ding J, Qiu J, Hao Z, Huang H, Liu Q, Liu W, et al. Prognostic value of preoperative [(68) Ga]Ga-FAPI-04 PET/CT in patients with resectable pancreatic ductal adenocarcinoma in correlation with immunohistological characteristics. Eur J Nucl Med Mol Imaging. 2023. https://doi.org/10.1007/s00259-022-06100-4.

    Article  PubMed  Google Scholar 

  46. Lee SM, Kim TS, Lee JW, Kim SK, Park SJ, Han SS. Improved prognostic value of standardized uptake value corrected for blood glucose level in pancreatic cancer using F-18 FDG PET. Clin Nucl Med. 2011;36:331–6. https://doi.org/10.1097/RLU.0b013e31820a9eea.

    Article  PubMed  Google Scholar 

  47. Xu HX, Chen T, Wang WQ, Wu CT, Liu C, Long J, et al. Metabolic tumour burden assessed by (1)(8)F-FDG PET/CT associated with serum CA19-9 predicts pancreatic cancer outcome after resection. Eur J Nucl Med Mol Imaging. 2014;41:1093–102. https://doi.org/10.1007/s00259-014-2688-8.

    Article  CAS  PubMed  Google Scholar 

  48. Goldstein D, El-Maraghi RH, Hammel P, Heinemann V, Kunzmann V, Sastre J, et al. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J Natl Cancer Inst. 2015;107. https://doi.org/10.1093/jnci/dju413.

  49. Kuten J, Levine C, Shamni O, Pelles S, Wolf I, Lahat G, et al. Head-to-head comparison of [(68)Ga]Ga-FAPI-04 and [(18)F]-FDG PET/CT in evaluating the extent of disease in gastric adenocarcinoma. Eur J Nucl Med Mol Imaging. 2021. https://doi.org/10.1007/s00259-021-05494-x.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Koom WS, Seong J, Kim YB, Pyun HO, Song SY. CA 19–9 as a predictor for response and survival in advanced pancreatic cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2009;73:1148–54. https://doi.org/10.1016/j.ijrobp.2008.06.1483.

    Article  CAS  PubMed  Google Scholar 

  51. Rocha Lima CM, Savarese D, Bruckner H, Dudek A, Eckardt J, Hainsworth J, et al. Irinotecan plus gemcitabine induces both radiographic and CA 19–9 tumor marker responses in patients with previously untreated advanced pancreatic cancer. J Clin Oncol. 2002;20:1182–91. https://doi.org/10.1200/jco.2002.20.5.1182.

    Article  PubMed  Google Scholar 

  52. Zhao L, Pang Y, Chen S, Chen J, Li Y, Yu Y, et al. Prognostic value of fibroblast activation protein expressing tumor volume calculated from [(68) Ga]Ga-FAPI PET/CT in patients with esophageal squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2023;50:593–601. https://doi.org/10.1007/s00259-022-05989-1.

    Article  CAS  PubMed  Google Scholar 

  53. Fagerland MW. t-tests, non-parametric tests, and large studies–a paradox of statistical practice? BMC Med Res Methodol. 2012;12:78. https://doi.org/10.1186/1471-2288-12-78.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Altman DG, Bland JM. Parametric v non-parametric methods for data analysis. BMJ (Clinical research ed). 2009;338:a3167. https://doi.org/10.1136/bmj.a3167.

    Article  PubMed  Google Scholar 

  55. Cui H, Guan J, Deng G, Yuan J, Lou C, Zhang W, et al. A Chinese retrospective multicenter study of first-line chemotherapy for advanced pancreatic cancer. Med Sci Monit. 2020;26:e927654. https://doi.org/10.12659/MSM.927654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff at PET/CT center, Shandong Cancer Hospital, for their contributions to tracer preparation and PET/CT imaging.

Funding

This work was supported by the following grants: National Natural Science Foundation of China (82272753), Young TaiShan Scholars and Academic Promotion Program of Shandong First Medical University (2019RC003), Shandong Provincial Natural Science Foundation(ZR2021LZL002), Bethune Cancer Radiotherapy Translational Medicine Research Fund (flzh202103).

Author information

Authors and Affiliations

Authors

Contributions

Jinbo Yue conceived and designed the study. Ziyuan Zhu participated in the experimental design and conduct and drafted the manuscript. Kai Cheng was responsible for preparation of the [18F] AlF-NOTA-FAPI-04. Ziyuan Zhu and Jing Liu were responsible for collecting PET/CT images. Zheng Fu and Yun Zhang carried out the nuclear medicine. Zheng Fu and Jinbo Yue assessed responses on the images per the RECIST system (v.1.1). Xiang Zhang did the pathology analyses. Fuhao Wang was responsible for data analysis. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zheng Fu or Jinbo Yue.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the local ethics committee of Shandong Cancer Hospital and Institute, and the patient gave written and informed consent before the study.

Consent for publication

All authors of the current manuscript meet the specified criteria for authorship and agreed to publish.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 481 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Cheng, K., Yun, Z. et al. [18F] AlF-NOTA-FAPI-04 PET/CT can predict treatment response and survival in patients receiving chemotherapy for inoperable pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging 50, 3425–3438 (2023). https://doi.org/10.1007/s00259-023-06271-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06271-8

Keywords

Navigation