Skip to main content
Log in

Elucidating the effects of pH shift on IgG1 monoclonal antibody acidic charge variant levels in Chinese hamster ovary cell cultures

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Charge variants, especially acidic charge variants, in recombinant monoclonal antibodies are critical quality attributes, which can affect antibodies’ properties in vitro and in vivo. Meanwhile, charge variants are cumulative effects of various post-translational modifications and chemical degradations on antibody. In this work, to investigate the effect of lowering culture pH in the stationary phase on acidic charge variant contents in fed-batch cultures and its mechanism, cell culture experiments in 2-L bioreactors were firstly performed to explore the changes in the charge distribution under the pH downshift condition using weak cation exchange chromatography. It is found that acidic charge variant contents were significantly decreased by pH downshift. Then, to reveal the mechanism by which the content of acidic charge variants is reduced under pH downshift condition, the variation of post-translational modifications and chemical degradations under the pH downshift condition was explored. Meanwhile, the structure of the acidic charge variants was characterized. Several analysis experiments including size exclusion chromatography, capillary electrophoresis-sodium dodecyl sulfate under non-reducing conditions, tryptic peptide map, and reduced antibody mass were applied in this study. The results show that the mechanism by which the content of acidic charge variants is reduced is that the contents of disulfide bond reduction, galactosylation, and asparagine deamination of the HC-N388 in the Fc domain were reduced by pH downshift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal SR (2014) What’s fueling the biotech engine–2012 to 2013. Nat Biotechnol 32:32–39. doi:10.1038/nbt.2794

    Article  CAS  PubMed  Google Scholar 

  • Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA (2010) Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem 21(12):2153–2163. doi:10.1021/bc100261d

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Harcum SW (2006) Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab Eng 8(2):123–132. doi:10.1016/j.ymben.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  • Dinnis DM, James DC (2005) Engineering mammalian cell factories for improved recombinant monoclonal antibody production: lessons from nature? Biotechnol Bioeng 91(2):180–189. doi:10.1002/bit.20499

    Article  CAS  PubMed  Google Scholar 

  • Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, Shire SJ, Bjork N, Totpal K, Chen AB (2001) Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl 752(2):233–245

    Article  CAS  PubMed  Google Scholar 

  • Hossler P, Wang M, McDermott S, Racicot C, Chemfe K, Zhang Y, Chumsae C, Manuilov A (2015) Cell culture media supplementation of bioflavonoids for the targeted reduction of acidic species charge variants on recombinant therapeutic proteins. Biotechnol Prog 31(4):1039–1052. doi:10.1002/btpr.2095

    Article  CAS  PubMed  Google Scholar 

  • Ivarsson M, Villiger TK, Morbidelli M, Soos M (2014) Evaluating the impact of cell culture process parameters on monoclonal antibody N-glycosylation. J Biotechnol 188:88–96. doi:10.1016/j.jbiotec.2014.08.026

    Article  CAS  PubMed  Google Scholar 

  • Kao YH, Hewitt DP, Trexler-Schmidt M, Laird MW (2010) Mechanism of antibody reduction in cell culture production processes. Biotechnol Bioeng 107(4):622–632. doi:10.1002/bit.22848

    Article  CAS  PubMed  Google Scholar 

  • Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, Yao Z, Sreedhara A, Cano T, Tesar D, Nijem I, Allison DE, Wong PY, Kao Y-H, Quan C, Joshi A, Harris RJ, Motchnik P (2010) Charge variants in IgG1: isolation, characterization, in vitro binding properties and pharmacokinetics in rats. mAbs 2(6):613–624. doi:10.4161/mabs.2.6.13333

    Article  PubMed  PubMed Central  Google Scholar 

  • Kishishita S, Nishikawa T, Shinoda Y, Nagashima H, Okamoto H, Takuma S, Aoyagi H (2015) Effect of temperature shift on levels of acidic charge variants in IgG monoclonal antibodies in Chinese hamster ovary cell culture. J Biosci Bioeng 119(6):700–705. doi:10.1016/j.jbiosc.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Kim DY, Oh DJ, Chang HN (2008) Long-term operation of depth filter perfusion systems (DFPS) for monoclonal antibody production using recombinant CHO cells: effect of temperature, pH, and dissolved oxygen. Biotechnol Bioproc E 13(4):401–409. doi:10.1007/s12257-008-0155-8

    Article  CAS  Google Scholar 

  • Li B, Gorman EM, Moore KD, Williams T, Schowen RL, Topp EM, Borchardt RT (2005) Effects of acidic N + 1 residues on asparagine deamidation rates in solution and in the solid state. J Pharm Sci 94(3):666–675. doi:10.1002/jps.20263

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J (2008) Heterogeneity of monoclonal antibodies. J Pharm Sci 97(7):2426–2447. doi:10.1002/jps.21180

    Article  CAS  PubMed  Google Scholar 

  • Lyubarskaya Y, Houde D, Woodard J, Murphy D, Mhatre R (2006) Analysis of recombinant monoclonal antibody isoforms by electrospray ionization mass spectrometry as a strategy for streamlining characterization of recombinant monoclonal antibody charge heterogeneity. Anal Biochem 348(1):24–39. doi:10.1016/j.ab.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  • Majid FAA, Butler M, Al-Rubeai M (2007) Glycosylation of an immunoglobulin produced from a murine hybridoma cell line: the effect of culture mode and the anti-apoptotic gene, bcl-2. Biotechnol Bioeng 97(1):156–169. doi:10.1002/bit.21207

    Article  CAS  PubMed  Google Scholar 

  • Mallaney M, Wang SH, Sreedhara A (2014) Effect of ambient light on monoclonal antibody product quality during small-scale mammalian cell culture process in clear glass bioreactors. Biotechnol Prog 30(3):562–570. doi:10.1002/btpr.1920

    Article  CAS  PubMed  Google Scholar 

  • Martin Gawlitzek TR, Lofgren J, Sliwkowski MB (2000) Ammonium alters N-glycan structures of recombinant TNFR-IgG degradative versus biosynthetic mechanisms. Biotechnol Bioeng 68:637–646

    Article  Google Scholar 

  • Melissa Perkins RT, Lunte S, Jeschke M (2000) Determination of the origin of charge heterogeneity in a murine monoclonal antibody. Pharm Res 17(9):1110–1117

    Article  Google Scholar 

  • Moorhouse KG, Nashabeh W, Deveney J, Bjork NS, Mulkerrin MG, Ryskamp T (1997) Validation of an HPLC method for the analysis of the charge heterogeneity of the recombinant monoclonal antibody IDEC-C2B8 after papain digestion. J Pharm Biomed Anal 16(4):593–603

    Article  CAS  PubMed  Google Scholar 

  • Oguchi S, Saito H, Tsukahara M, Tsumura H (2006) pH condition in temperature shift cultivation enhances cell longevity and specific hMab productivity in CHO culture. Cytotechnology 52(3):199–207. doi:10.1007/s10616-007-9059-2

    Article  CAS  PubMed  Google Scholar 

  • Pacis E, Yu M, Autsen J, Bayer R, Li F (2011) Effects of cell culture conditions on antibody N-linked glycosylation-what affects high mannose 5 glycoform. Biotechnol Bioeng 108(10):2348–2358. doi:10.1002/bit.23200

    Article  CAS  PubMed  Google Scholar 

  • Robblee J, Collins BE, Kaundinya G, Bosques CJ (2015) Methods related to omalizumab. United States Patent No. US20150140608A1

  • Rodriguez J, Spearman M, Huzel N, Butler M (2005) Enhanced production of monomeric interferon by CHO cells through the control of culture conditions. Biotechnol Prog 21(1):22–30

    Article  CAS  PubMed  Google Scholar 

  • Schmelzer AE, Miller WM (2002) Hyperosmotic stress and elevated pCO2 alter monoclonal antibody charge distribution and monosaccharide content. Biotechnol Prog 18(2):346–353. doi:10.1021/bp010187d

    Article  CAS  PubMed  Google Scholar 

  • Seo JS, Kim YJ, Cho JM, Baek E, Lee GM (2013) Effect of culture pH on recombinant antibody production by a new human cell line, F2N78, grown in suspension at 33.0 degrees C and 37.0 degrees C. Appl Microbiol Biotechnol 97(12):5283–5291. doi:10.1007/s00253-013-4849-2

    Article  CAS  PubMed  Google Scholar 

  • Trexler-Schmidt M, Sargis S, Chiu J, Sze-Khoo S, Mun M, Kao YH, Laird MW (2010) Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing. Biotechnol Bioeng 106(3):452–461. doi:10.1002/bit.22699

    CAS  PubMed  Google Scholar 

  • Vlasak J, Ionescu R (2008) Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Curr Pharm Biotechnol 9(6):468–481

    Article  CAS  PubMed  Google Scholar 

  • Wakankar AA, Borchardt RT (2006) Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization. J Pharm Sci 95(11):2321–2336. doi:10.1002/jps.20740

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Steen S, Hambly D, Valliere-Douglass J, Vanden Bos T, Smallwood S, Yates Z, Arroll T, Han Y, Gadgil H, Latypov RF, Wallace A, Lim A, Kleemann GR, Wang W, Balland A (2009) Succinimide formation at Asn 55 in the complementarity determining region of a recombinant monoclonal antibody IgG1 heavy chain. J Pharm Sci 98(10):3509–3521. doi:10.1002/jps.21655

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Bourret J, Cano T (2011) Isolation and characterization of therapeutic antibody charge variants using cation exchange displacement chromatography. J Chromatogr A 1218(31):5079–5086. doi:10.1016/j.chroma.2011.05.061

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Sun YT, Tang H, Fan L, Hu D, Liu J, Liu X, Tan WS (2015) Culture temperature modulates monoclonal antibody charge variation distribution in Chinese hamster ovary cell cultures. Biotechnol Lett 37(11):2151–2157. doi:10.1007/s10529-015-1904-3

    Article  CAS  PubMed  Google Scholar 

  • Zheng JY, Janis LJ (2006) Influence of pH, buffer species, and storage temperature on physicochemical stability of a humanized monoclonal antibody LA298. Int J Pharm 308(1–2):46–51. doi:10.1016/j.ijpharm.2005.10.024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21206040 and 21406066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhou or Li Fan.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, P., Niu, H., Chen, X. et al. Elucidating the effects of pH shift on IgG1 monoclonal antibody acidic charge variant levels in Chinese hamster ovary cell cultures. Appl Microbiol Biotechnol 100, 10343–10353 (2016). https://doi.org/10.1007/s00253-016-7749-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7749-4

Keywords

Navigation