Skip to main content
Log in

A comparison of genes involved in sphingan biosynthesis brought up to date

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial polysaccharides have a wide range of functional properties and show high relevance in industrial applications. The possibility to create tailor-made polysaccharides by genetic engineering will further enhance the product portfolio and may open new fields of application. Here, we have examined in detail the recently sequenced genome of the welan-producing strain Sphingomonas sp. ATCC 31555 to identify the complete welan cluster and further genes involved in EPS production. The corresponding genes were compared on the nucleotide and amino acid sequence level to the EPS clusters of the described gellan-producing Sphingomonas elodea ATCC 31461, diutan-producing Sphingomonas sp. ATCC 53159, and the S-88-producing Sphingomonas sp. ATCC 31554 strains. We also compared the previously mentioned strains to each other and included the genes upstream of the main cluster in gellan and welan cluster. The cluster organization of Sphingomonas strain S-7 was also compared based on previous hybridization experiments, without nucleotide sequences. We have found that the occurrence of genes in all biosynthesis clusters is connected to the structures of the various produced sphingans. Along these lines, homologous genes responsible for the assembly of the identical repeating unit generally show high sequence identity, whereas genes for putative side chain attachment urf31, urf31.4, and urf34 vary more in distinct areas. Moreover, gene clusters for biosynthesis of diutan, welan, gellan, and S-88 as well as S-7 are similar in general organization but differ in location and arrangement of some genes. Finally, we summarized genetic and mutational engineering approaches toward modified sphingan variants as described in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aragão D, Fialho AM, Marques AR, Mitchell EP, Sá-Correia I, Frazão C (2007) The complex of Sphingomonas elodea ATCC 31461 glucose-1-phosphate uridylyltransferase with glucose-1-phosphate reveals a novel quaternary structure, unique among nucleoside diphosphate-sugar pyrophosphorylase members. J Bacteriol 189(12):4520–4528. doi:10.1128/jb.00277-07

    Article  PubMed Central  PubMed  Google Scholar 

  • Armentrout RW, Mikolajczak M, Pollock TJ, Thorne L, Yamazaki M (1998) DNA segments and methods for increasing polysaccharide production. Shin-Etsu Bio, Inc. US5854034 A

  • Aylward FO, McDonald BR, Adams SM, Valenzuela A, Schmidt RA, Goodwin LA, Woyke T, Currie CR, Suen G, Poulsen M (2013) Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 79(12):3724–3733. doi:10.1128/AEM.00518-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bajaj IB, Survase SA, Saudagar PS, Singhal RS (2007) Gellan gum: fermentative production, downstream processing and applications. Food Technol Biotechnol 45(4):341–354

    CAS  Google Scholar 

  • Campbell JA, Davies GJ, Bulone V, Henrissat B (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326(Pt 3):929–939

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chandrasekaran R, Radha A, Thailambal VG (1992) Roles of potassium ions, acetyl and L-glyceryl groups in native gellan double helix: an X-ray study. Carbohydr Res 224:1–17

    Article  CAS  PubMed  Google Scholar 

  • Charnock SJ, Davies GJ (1999) Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38(20):6380–6385. doi:10.1021/bi990270y

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury TA, Lindberg B, Lindquist U, Baird J (1987) Structural studies of an extracellular polysaccharide, S-657, elaborated by Xanthomonas ATCC 53159. Carbohydr Res 164(0):117–122. doi:10.1016/0008-6215(87)80124-6

    Article  CAS  Google Scholar 

  • Coleman RJ, Patel YN, Harding NE (2008) Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159. J Ind Microbiol Biotechnol 35(4):263–274. doi:10.1007/s10295-008-0303-3

    Article  CAS  PubMed  Google Scholar 

  • Diltz S, Zeller SG (2001) Location of O-acetyl groups in S-657 using the reductive-cleavage method. Carbohydr Res 331(3):265–270

    Article  CAS  PubMed  Google Scholar 

  • Fialho A, Moreira L, Granja A, Hoffmann K, Popescu A, Sá-Correia I (2007) Biotechnology of the Bacterial gellan gum: genes and enzymes of the biosynthetic pathway. In: Pereira M (ed) A portrait of state-of-the-art research at the Technical University of Lisbon. Springer, Netherlands, pp 233–250. doi:10.1007/978-1-4020-5690-1_15

    Chapter  Google Scholar 

  • Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sa-Correia I (2008) Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 79(6):889–900. doi:10.1007/s00253-008-1496-0

    Article  CAS  PubMed  Google Scholar 

  • Funami T, Noda S, Nakauma M, Ishihara S, Takahashi R, Al-Assaf S, Ikeda S, Nishinari K, Phillips GO (2008) Molecular structures of gellan gum imaged with atomic force microscopy in relation to the rheological behavior in aqueous systems in the presence or absence of various cations. J Agr Food Chem 56(18):8609–8618. doi:10.1021/jf8007713

    Article  CAS  Google Scholar 

  • Gai Z, Wang X, Zhang X, Su F, Tang H, Tai C, Tao F, Ma C, Xu P (2011) Genome sequence of Sphingomonas elodea ATCC 31461, a highly productive industrial strain of gellan gum. J Bacteriol 193(24):7015–7016. doi:10.1128/JB.06307-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garinot-Schneider C, Lellouch AC, Geremia RA (2000) Identification of essential amino acid residues in the Sinorhizobium meliloti glucosyltransferase ExoM. J Biol Chem 275(40):31407–31413. doi:10.1074/jbc.M004524200

    Article  CAS  PubMed  Google Scholar 

  • Giavasis I, Harvey LM, McNeil B (2000) Gellan gum. Crit Rev Biotechnol 20(3):177–211. doi:10.1080/07388550008984169

    Article  CAS  PubMed  Google Scholar 

  • Glucksmann MA, Reuber TL, Walker GC (1993) Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti. J Bacteriol 175(21):7033–7044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Granja AT, Popescu A, Marques AR, Sa-Correia I, Fialho AM (2007) Biochemical characterization and phylogenetic analysis of UDP-glucose dehydrogenase from the gellan gum producer Sphingomonas elodea ATCC 31461. Appl Microbiol Biotechnol 76(6):1319–1327. doi:10.1007/s00253-007-1112-8

    Article  CAS  PubMed  Google Scholar 

  • Ha S, Walker D, Shi Y, Walker S (2000) The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci 9(6):1045–1052. doi:10.1110/ps.9.6.1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hancock SM, Vaighan MD, Withers SG (2006) Engineering of glycosidases and glycosyltransferases. Curr Opin Chem Biol 10(5):509–519. doi:10.1016/j.cbpa.2006.07.015

    Article  CAS  PubMed  Google Scholar 

  • Harding N, McQuown J, Patel YN (2003) Mutant strain of Sphingomonas elodea which produces non-acetylated gellan gum. CP Kelco U.S., Inc, Delaware

    Google Scholar 

  • Harding NE, Patel YN, Coleman RJ (2004) Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461. J Ind Microbiol Biotechnol 31(2):70–82. doi:10.1007/s10295-004-0118-9

    Article  CAS  PubMed  Google Scholar 

  • Harding NE, Patel YN, Coleman R, Matzke S (2011) High viscosity diutan gums. Cp Kelco U.S., Inc, US7868167 B2

  • Harding NE, Yamini P, Coleman RJ (2014) Targeted gene deletions for polysaccharide slime formers. Cp Kelco U.S., Inc, US8759071 B2

  • Hember MW, Richardson RK, Morris ER (1994) Native ordered structure of welan polysaccharide: conformational transitions and gel formation in aqueous dimethyl sulphoxide. Carbohydr Res 252:209–221

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Li X, Wu M, Wang S, Li G, Ma T (2013) Cloning, expression and characterization of a phosphoglucomutase/phosphomannomutase from sphingan-producing Sphingomonas sanxanigenens. Biotechnol Lett 35(8):1265–1270. doi:10.1007/s10529-013-1193-7

    Article  CAS  PubMed  Google Scholar 

  • Ikeda S, Gohtani S, Nishinari K, Zhong Q (2013) High acyl gellan networks probed by rheology and atomic force microscopy. Food Sci Technol Res 19(2):201–210

    Article  CAS  Google Scholar 

  • Jansson PE, Widmalm G (1994) Welan gum (S-130) contains repeating units with randomly distributed L-mannosyl and L-rhamnosyl terminal groups, as determined by FABMS. Carbohydr Res 256(2):327–330

    Article  CAS  PubMed  Google Scholar 

  • Jansson P-E, Lindberg B, Sandford PA (1983) Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr Res 124(1):135–139. doi:10.1016/0008-6215(83)88361-X

    Article  CAS  Google Scholar 

  • Jansson PE, Kumar NS, Lindberg B (1986) Structural studies of a polysaccharide (S-88) elaborated by Pseudomonas ATCC 31554. Carbohydr Res 156:165–172

    Article  CAS  PubMed  Google Scholar 

  • Kang KS, Veeder GT (1982) Polysaccharide S-60 and bacterial fermentation process for its preparation. Merck & Co., Inc., US4326053 A

  • Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A, Puhler A, Ielpi L (1998) Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 180(7):1607–1617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaur V, Bera MB, Panesar PS, Kumar H, Kennedy JF (2014) Welan gum: microbial production, characterization, and applications. Int J Biol Macromol 65C:454–461. doi:10.1016/j.ijbiomac.2014.01.061

    Article  Google Scholar 

  • Kuo M-S, Mort AJ, Dell A (1986) Identification and location of l-glycerate, an unusual acyl substituent in gellan gum. Carbohydr Res 156(0):173–187. doi:10.1016/S0008-6215(00)90109-5

    Article  CAS  Google Scholar 

  • Lapasin R, Pricl S (1995) Industrial applications of polysaccharides. In: Rheology of industrial polysaccharides: theory and applications. Springer US, pp 134–161. doi:10.1007/978-1-4615-2185-3_2

  • Marques AR, Ferreira PB, Sa-Correia I, Fialho AM (2003) Characterization of the ugpG gene encoding a UDP-glucose pyrophosphorylase from the gellan gum producer Sphingomonas paucimobilis ATCC 31461. Mol Genet Genomics 268(6):816–824. doi:10.1007/s00438-003-0805-7

    CAS  PubMed  Google Scholar 

  • Martins LO, Sa-Correia I (1991) Gellan gum biosynthetic enzymes in producing and nonproducing variants of Pseudomonas elodea. Biotechnol Appl Biochem 14(3):357–364

    CAS  PubMed  Google Scholar 

  • Moreira LM, Hoffmann K, Albano H, Becker A, Niehaus K, Sa-Correia I (2004) The gellan gum biosynthetic genes gelC and gelE encode two separate polypeptides homologous to the activator and the kinase domains of tyrosine autokinases. J Mol Microbiol Biotechnol 8(1):43–57. doi:10.1159/000082080

    Article  CAS  PubMed  Google Scholar 

  • Nickerson MT, Paulson AT, Speers RA (2003) Rheological properties of gellan solutions: effect of calcium ions and temperature on pre-gel formation. Food Hydrocolloid 17(5):577–583. doi:10.1016/S0268-005X(02)00075-9

    Article  CAS  Google Scholar 

  • O’Neill MA, Selvendran RR, Morris VJ (1983) Structure of the acidic extracellular gelling polysaccharide produced by Pseudomonas elodea. Carbohydr Res 124:123–133

    Article  Google Scholar 

  • Peik JA, Steenbergen SM, Veeder GT (1992) Heteropolysaccharide S-657. Merck & Co., Inc, US5175278 A

  • Plank J (2005) Applications of biopolymers in construction engineering. In: Biopolymers online. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/3527600035.bpola002

  • Pollock TJ (1993) Gellan-related polysaccharides and the genus Sphingomonas. J Gen Microbiol 139(8):1939–1945. doi:10.1099/00221287-139-8-1939

    Article  CAS  Google Scholar 

  • Pollock TJ (2004) Production of modified polysaccharide S-7. Shin-Etsu Bio, Inc., US6709845 B1

  • Pollock TJ (2005) Sphingan group of exopolysaccharides (EPS). In: Biopolymers online. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/3527600035.bpol5010

  • Pollock TJ, Thorne L, Yamazaki M, Mikolajczak M, Armentrout RW (1996) DNS-Segmente und Verfahren zur Erhöhung von Polysaccharid-Produktion. Shin-Etsu Bio, Inc., DE69637385 D1

  • Pollock TJ, van Workum WA, Thorne L, Mikolajczak MJ, Yamazaki M, Kijne JW, Armentrout RW (1998) Assignment of biochemical functions to glycosyl transferase genes which are essential for biosynthesis of exopolysaccharides in Sphingomonas strain S88 and Rhizobium leguminosarum. J Bacteriol 180(3):586–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ralph B, Stan B, Ellen B, Nancy H, Dagmar M, Neil M, N PY, Carrie SJ (2002) Mutant bacterial strains of the genus sphingonomas deficient in production of polyhydroxybutyrate and process of clarification of sphingans. Cp Kelco U.S., Inc., WO2001064897 A3

  • Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz CRH, Rick PD (1996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4(12):495–503. doi:10.1016/S0966-842X(97)82912-5

    Article  CAS  PubMed  Google Scholar 

  • Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8(8):578–592. doi:10.1038/nrmicro2354

    Article  CAS  PubMed  Google Scholar 

  • Sa-Correia I, Fialho AM, Videira P, Moreira LM, Marques AR, Albano H (2002) Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J Ind Microbiol Biotechnol 29(4):170–176. doi:10.1038/sj.jim.7000266

    Article  CAS  PubMed  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed Central  PubMed  Google Scholar 

  • Silva E, Marques AR, Fialho AM, Granja AT, Sa-Correia I (2005) Proteins encoded by Sphingomonas elodea ATCC 31461 rmlA and ugpG genes, involved in gellan gum biosynthesis, exhibit both dTDP- and UDP-glucose pyrophosphorylase activities. Appl Environ Microbiol 71(8):4703–4712. doi:10.1128/AEM.71.8.4703-4712.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stankowski JD, Zeller SG (1992) Location of the O-acetyl group in welan by the reductive-cleavage method. Carbohydr Res 224:337–341

    Article  CAS  PubMed  Google Scholar 

  • Tako M, Tamaki H (2005) Molecular Origin for the Thermal Stability of S-88 Gum Produced by Pseudomonas ATCC 31554. Polym J 37(7):498–505. doi:10.1295/polymj.37.498

    Article  CAS  Google Scholar 

  • Thorne L, Mikolajczak MJ, Armentrout RW, Pollock TJ (2000) Increasing the yield and viscosity of exopolysaccharides secreted by Sphingomonas by augmentation of chromosomal genes with multiple copies of cloned biosynthetic genes. J Ind Microbiol Biotech 25(1):49–57. doi:10.1038/sj.jim.7000019

    Article  CAS  Google Scholar 

  • Videira PA, Cortes LL, Fialho AM, Sa-Correia I (2000) Identification of the pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, in the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461. Appl Environ Microbiol 66(5):2252–2258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Videira P, Fialho A, Geremia RA, Breton C, Sa-Correia I (2001) Biochemical characterization of the beta-1,4-glucuronosyltransferase GelK in the gellan gum-producing strain Sphingomonas paucimobilis A.T.C.C. 31461. Biochem J 358(Pt 2):457–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Tao F, Gai Z, Tang H, Xu P (2012) Genome sequence of the welan gum-producing strain Sphingomonas sp. ATCC 31555. J Bacteriol 194(21):5989–5990. doi:10.1128/JB.01486-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • West T (2005) Improved polysaccharide production using strain improvement. In: Barredo J-L (ed) Microbial processes and products, vol 18. Methods in Biotechnology. Humana Press, pp 301–311. doi:10.1385/1-59259-847-1:301

  • White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotech 7(3):301–306. doi:10.1016/S0958-1669(96)80034-6

    Article  CAS  PubMed  Google Scholar 

  • Whitney JC, Howell PL (2013) Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 21(2):63–72. doi:10.1016/j.tim.2012.10.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiggins C, Munro S (1998) Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc Natl Acad Sci U S A. doi:10.1073/pnas.95.14.7945

    PubMed Central  PubMed  Google Scholar 

  • Xu L, Xu G, Liu T, Chen Y, Gong H (2013) The comparison of rheological properties of aqueous welan gum and xanthan gum solutions. Carbohyd Polym 92(1):516–522. doi:10.1016/j.carbpol.2012.09.082

    Article  CAS  Google Scholar 

  • Yamazaki M, Thorne L, Mikolajczak M, Armentrout RW, Pollock TJ (1996) Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol 178(9):2676–2687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2):203–214. doi:10.1089/10665270050081478

    Article  CAS  PubMed  Google Scholar 

  • Zhu P, Chen X, Li S, Xu H, Dong S, Xu Z, Zhang Y (2014) Screening and characterization of Sphingomonas sp. mutant for welan gum biosynthesis at an elevated temperature. Bioproc Biosyst Eng doi:10.1007/s00449-014-1159-8

Download references

Acknowledgments

This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG grant SPP 1569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Schmid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmid, J., Sperl, N. & Sieber, V. A comparison of genes involved in sphingan biosynthesis brought up to date. Appl Microbiol Biotechnol 98, 7719–7733 (2014). https://doi.org/10.1007/s00253-014-5940-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5940-z

Keywords

Navigation