Skip to main content
Log in

Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Sphingomonas elodea ATCC 31461 produces gellan, a capsular polysaccharide that is useful as a gelling agent for food and microbiological media. Complementation of nonmucoid S. elodea mutants with a gene library resulted in identification of genes essential for gellan biosynthesis. A cluster of 18 genes spanning 21 kb was isolated. These 18 genes are homologous to genes for synthesis of sphingan polysaccharide S-88 from Sphingomonas sp. ATCC 31554, with predicted amino acid identities varying from 61% to 98%. Both polysaccharides have the same tetrasaccharide repeat unit, comprised of [→4)-α-l-rhamnose-(1→3)-β-d-glucose-(1→4)-β-d-glucuronic acid-(1→4)-β-d-glucose-(1→]. Polysaccharide S-88, however, has mannose or rhamnose in the fourth position and has a rhamnosyl side chain, while gellan has no sugar side chain but is modified by glyceryl and acetyl substituents. Genes for synthesis of the precursor dTDP-l-rhamnose were highly conserved. The least conserved genes in this cluster encode putative glycosyl transferases III and IV and a gene of unknown function, gelF. Three genes (gelI, gelM, and gelN) affected the amount and rheology of gellan produced. Four additional genes present in the S-88 sphingan biosynthetic gene cluster did not have homologs in the gene cluster for gellan biosynthesis. Three of these gene homologs, gelR, gelS, and gelG, were found in an operon unlinked to the main gellan biosynthetic gene cluster. In a third region, a gene possibly involved in positive regulation of gellan biosynthesis was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–C

Similar content being viewed by others

References

  1. Baird JK, Talashek TA, Chang H (1992) Gellan gum: effect of composition on gel properties. In: Phillips GO, Williams PA, Wedlock DJ (eds) Gums and stabilizers for the food industry, vol 6. Oxford University Press, New York, pp 479–487

  2. Chandrasekaran R, Radha A, Thailambal VG (1992) Roles of potassium ions, acetyl and l-glyceryl groups in native gellan double helix: an X-ray study. Carbohydr Res 224:1–17

    Article  CAS  PubMed  Google Scholar 

  3. Chowdhury TA, Lindberg B, Lindquist U, Baird J (1987) Structural studies of an extracellular polysaccharide, S-657, elaborated by Xanthomonas ATCC 53159. Carbohydr Res 164:117–122

    Article  CAS  Google Scholar 

  4. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    CAS  PubMed  Google Scholar 

  5. Drummelsmith J, Whitfield C (1999) Gene products required for surface expression of the capsular form of the group 1 K antigen in Escherichia coli (O9a:K30). Mol Microbiol 31:1321–1332

    Article  CAS  PubMed  Google Scholar 

  6. Falk C, Jansson P-E, Rinaudo M, Heyraud A, Widmalm G, Hebbar P (1996) Structural studies of the exocellular polysaccharide from Sphingomonas paucimobilis strain I-886. Carbohydr Res 285:69–79

    Article  CAS  PubMed  Google Scholar 

  7. Fialho AM, Monteiro GA, Sa-Correia I (1991) Conjugal transfer of recombinant plasmids into gellan gum-producing and nonproducing variants of Pseudomonas elodea ATCC 31461. Lett Appl Microbiol 12:85–87

    CAS  PubMed  Google Scholar 

  8. Finnie C, Zorreguieta A, Hartley NM, Downie JA (1998) Characterization of Rhizobium leguminosarum exopolysaccharide glycanases that are secreted via a type I exporter and have a novel heptapepide repeat motif. J Bacteriol 180:1691–1699

    CAS  PubMed  Google Scholar 

  9. Gay P, Le Coq D, Steinmetz M, Berkelman T, Kado CI (1985) Positive selection procedure for entrapment of insertion sequence elements in Gram-negative bacteria. J Bacteriol 164:918–921

    CAS  PubMed  Google Scholar 

  10. Guerry P, Van Embden J, Falkow S (1974) Molecular nature of two nonconjugative plasmids carrying drug resistance genes. J Bacteriol 117:619–630

    CAS  PubMed  Google Scholar 

  11. Harding NE, Cleary JM, Cabanas DK, Rosen IG, Kang KS (1987) Genetic and physical analysis of a cluster of genes essential for xanthan gum biosynthesis in Xanthomonas campestris. J Bacteriol 169:2854–2861

    CAS  PubMed  Google Scholar 

  12. Harding NE, Raffo S, Raimondi A, Cleary JM, Ielpi L (1992) Identification, genetic and biochemical analysis of genes involved in synthesis of sugar nucleotide precursors of xanthan gum. J Gen Microbiol 139:447–457

    Google Scholar 

  13. Ielpi L, Couso RO, Dankert MA (1993) Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J Bacteriol 175:2490–2500

    CAS  PubMed  Google Scholar 

  14. Jansson PE, Lindberg B, Sandford PA (1983) Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr Res 124:135–139

    Article  CAS  Google Scholar 

  15. Jansson PE, Kumar NS, Lindberg B (1986) Structural studies of a polysaccharide (S-88) elaborated by Pseudomonas ATCC 31554. Carbohydr Res 156:165–172

    Article  CAS  PubMed  Google Scholar 

  16. Jay AJ, Colquhoun IJ, Ridout MJ, Brownsey GJ, Morris VJ, Fialho AM, Leitao JH, Sa-Correia I (1998) Analysis of structure and function of gellans with different substitution patterns. Carbohydr Polym 35:179–188

    Google Scholar 

  17. Kamoun S, Tola E, Kamdar H, Kado CI (1992) Rapid generation of directed and unmarked deletions in Xanthomonas. Mol Microbiol 6:809–816

    CAS  PubMed  Google Scholar 

  18. Kang KS, Veeder GT (1982) Polysaccharide S-60 and bacterial fermentation process for its preparation. US Patent 4 326 053

  19. Kang KS, Pettitt DJ (1993) Xanthan, gellan, welan, and rhamsan. In: Whistler RL, BeMiller JN (eds) Industrial gums: polysaccharides and their derivatives, 3rd edn. Academic Press, New York, pp 341–398

  20. Kang KS, Veeder GT, Mirrasoul PJ, Kaneko T, Cottrell IW (1982) Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl Environ Microbiol 43:1086–1091

    Google Scholar 

  21. Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A, Puhler A, Ielpi L (1998) Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 180:1607–1617

    CAS  PubMed  Google Scholar 

  22. Krontinen VP, Saris P, Sarvas M (1991) A gene (prsA) of Bacillus subtilis involved in a novel, late stage of protein export. Mol Microbiol 5:1273–1283

    PubMed  Google Scholar 

  23. Kuo MS, Mort AJ, Dell A (1986) Identification and location of l-glycerate, an unusual substituent in gellan gum. Carbohydr Res 56:173–187

    Article  Google Scholar 

  24. Lee EJ, Chandrasekaran R (1991) X-ray and computer modeling studies on gellan-related polymers: molecular structures of welan, S-657, and rhamsan. Carbohydr Res 214:11–24

    Article  CAS  PubMed  Google Scholar 

  25. Lee S-P, Kim T-R, Sinskey AJ (2000) Cloning and sequencing of genes involved in the morphological change of Z. ramigera. J Microbiol Biotechnol 10:161–168

    Article  CAS  Google Scholar 

  26. Lenz O, Schwartz E, Dernedde J, Eitinger M, Friedrich B (1994) The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol 176:4385–4393

    CAS  PubMed  Google Scholar 

  27. Liu D, Cole RA, Reeves PR (1996) An O antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. J Bacteriol 178:2102–2107

    CAS  PubMed  Google Scholar 

  28. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

  29. Moorhouse R (1987) Structure/property relationship of a family of microbial polysaccharides. In: Yalpani M (ed) Industrial polysaccharides: genetic engineering, structure/property relations and applications. Elsevier, Amsterdam, pp 187–206

  30. O’Neill MA, Selvendran RR, Morris VJ (1983) Structure of the acidic extracellular gelling polysaccharide produced by Pseudomonas elodea. Carboydr Res 124:123–133

    Article  CAS  Google Scholar 

  31. O’Neill MA, Darvill AG, Albersheim P, Chou KJ (1990) Structural analysis of an acidic polysaccharide secreted by Xanthobacter sp. (ATCC 53272). Carbohydr Res 206:289–296

    Article  CAS  PubMed  Google Scholar 

  32. Pollock TJ (1993) Gellan-related polysaccharides and the genus Sphingomonas. J Gen Microbiol 139:1939–1945

    CAS  Google Scholar 

  33. Pollock TJ, Armentrout RW (1999) Planktonic/sessile dimorphism of polysaccharide-encapsulated Sphingomonads. J Ind Microbiol Biotechnol 23:436–441

    Article  CAS  PubMed  Google Scholar 

  34. Pollock TJ, Thorne L, Yamazaki M, Mikolajczak M, Armentrout RW (1994) Mechanism of bacitracin resistance in Gram-negative bacteria that synthesize exopolysaccharide. J Bacteriol 176:6229–6237

    CAS  PubMed  Google Scholar 

  35. Pollock TJ, van Workum WAT, Thorne L, Mikolajczak M, Yamazaki M, Kijne JW, Armentrout RW (1998) Assignment of biochemical functions to glycosyl transferase genes which are essential for biosynthesis of exopolysaccharides in Sphingomonas strain S88 and Rhizobium leguminosarum. J Bacteriol 180:586–593

    CAS  PubMed  Google Scholar 

  36. Rahm A, Drummelsmith J, Whitfield C (1999) Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. J Bacteriol 7:2307–2313

    Google Scholar 

  37. Sa-Correia I, Fialho AM, Videira P, Moreira LM, Marques AR, Albano H (2002) Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J Ind Microbiol Biotechnol 29:170–176

    PubMed  Google Scholar 

  38. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  39. Skaggs B, Rakitsky W, Phyfferoen A (2000) Method for improved rheological control in cementitious systems. US Patent 6 110 271

    Google Scholar 

  40. Stone KJ, Strominger JL (1971) Mechanism of action of bacitracin: complexation with metal ion and C55-isoprenyl pyrophosphate. Proc Natl Acad Sci USA 68:3223–3227

    CAS  PubMed  Google Scholar 

  41. Staskawicz B, Dahlbeck D, Keen N, Napoli C (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. Glycinea. J Bacteriol 169:5789–5794

    PubMed  Google Scholar 

  42. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analysis. Int J Syst Evol Microbiol 51:1405–1417

    PubMed  Google Scholar 

  43. Thorne L, Mikolajczak MJ, Armentrout RW, Pollock TJ (2000) Increasing the yield and viscosity of exopolysaccharides secreted by Sphingomonas by augmentation of chromosomal genes with multiple copies of cloned biosynthetic genes. J Ind Microbiol Biotechnol 25:49–57

    Article  CAS  Google Scholar 

  44. Vartak NB, Lin CC, Cleary JM, Fagan MJ, Saier MH Jr (1995) Glucose metabolism in Sphingomonas elodea: pathway engineering via construction of a glucose-6-phosphate dehydrogenase insertion mutant. Microbiology 141:2339–2350

    CAS  PubMed  Google Scholar 

  45. Videira P, Fialho A, Geremia RA, Breton C, Sa-Correia I (2001) Biochemical characterization of the β-1,4-glucuronosyltransferase GelK in the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461. Biochem J 258:457–464

    Article  Google Scholar 

  46. Vincent C, Doublet P, Grangeasse C, Vaganay E, Cozzone AJ, Duclos B (1999) Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol 181:3472–3477

    CAS  PubMed  Google Scholar 

  47. Wugeditsch T, Paiment A, Hocking J, Drummelsmith J, Forrester C, Whitfield C (2001) Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli. J Biol Chem 276:2361–2371

    Article  CAS  PubMed  Google Scholar 

  48. Yamazaki M, Thorne L, Mikolajczak M, Armentrout RW, Pollock TJ (1996) Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol 178:2676–2687

    CAS  PubMed  Google Scholar 

  49. Yoshida T, Ayabe Y, Yasunaga M, Usami Y, Habe H, Nojiri H, Omori T (2003) Genes involved in the synthesis of the exopolysaccharide methanolan by the obligate methylotroph Methylobacillus sp strain 12S. Microbiology 149:431–444

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Joseph M. Cleary for many useful discussions and his careful review of this manuscript. We appreciate the technical assistance of Alan Kanehl, John McQuown and Brian Mueller, and technical discussions with Tom Ramseier and Stan Bower. Sequencing of DNA was accomplished by the Microchemical Core Facility at San Diego State University; Luis Ielpi’s laboratory at the Fundación Instituto Leloir, Buenos Aires, Argentina; Monsanto Company, St. Louis, Mo.; and at Lark Technologies, Houston, Tex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy E. Harding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harding, N.E., Patel, Y.N. & Coleman, R.J. Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461. J IND MICROBIOL BIOTECHNOL 31, 70–82 (2004). https://doi.org/10.1007/s10295-004-0118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-004-0118-9

Keywords

Navigation