Skip to main content
Log in

Asymptotics for Wave Equations with Damping Only on the Dynamical Boundary

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this work, we use a semigroup approach to study the asymptotics of the linear wave equation with frictional damping only on the dynamic boundary. We reformulate the model into an abstract Cauchy problem and show that the spectrum of the differential operator corresponding to the Cauchy problem has no purely imaginary values. Moreover, by controlling the trace of the first derivative, we establish the estimate for the order of unboundedness of the resolvent on the imaginary axis and obtain the asymptotics for the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbas, Z., Nicaise, S.: The multidimensional wave equation with generalized acoustic boundary conditions I: Strong stability. SIAM J. Control Optim. 53, 2558–2581 (2015)

    Article  MathSciNet  Google Scholar 

  2. Abbas, Z., Nicaise, S.: The multidimensional wave equation with generalized acoustic boundary conditions II: Polynomial stability. SIAM J. Control Optim. 53, 2582–2607 (2015)

    Article  MathSciNet  Google Scholar 

  3. Avdonin, S., Edward, J.: Exact controllability for string with attached masses. SIAM J. Control Optim. 56(2), 945–980 (2018)

    Article  MathSciNet  Google Scholar 

  4. Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347(2), 455–478 (2010)

    Article  MathSciNet  Google Scholar 

  5. Buffe, R.: Stabilization of the wave equation with Ventcel boundary condition. J. Math. Pures Appl. 108(2), 207–259 (2017)

    Article  MathSciNet  Google Scholar 

  6. Castro, C.: Asymptotic analysis and control of a hybrid system composed by two vibrating strings connected by a point mass, ESAIM: Control. Optim. Calc. Variat. 2, 231–280 (1997)

    Article  Google Scholar 

  7. Castro, C., Zuazua, E.: Une remarque sur les séries de Fourier non-harmoniques et son application âla contrôlabilité des cordes avec densité singulière, C. R. Acad. Sci. Paris Sr. I Math. 323(4), 365–370 (1996)

    MATH  Google Scholar 

  8. Cavalcanti, M.M., Khemmoudj, A., Medjden, M.: Uniform stabilization of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions. J. Math. Anal. Appl. 328(2), 900–930 (2007)

    Article  MathSciNet  Google Scholar 

  9. Cavalcanti, M.M., Cavalcanti, V.N.D., Fukuoka, R., Toundykov, D.: Stabilization of the damped wave equation with Cauchy–Ventcel boundary conditions. J. Evol. Equ. 9(1), 143–169 (2009)

    Article  MathSciNet  Google Scholar 

  10. Cavalcanti, M.M., Lasiecka, I., Toundykov, D.: Wave equation with damping affecting only a subset of static Wentzell boundary is uniformly stable. Trans. Am. Math. Soc. 364(11), 5693–5713 (2012)

    Article  MathSciNet  Google Scholar 

  11. Cavalcanti, M.M., Lasiecka, I., Toundykov, D.: Geometrically constrained stabilization of wave equations with Wentzell boundary conditions. Appl. Anal. 91(8), 1427–1452 (2012)

    Article  MathSciNet  Google Scholar 

  12. Conrad, F., Rao, B.P.: Decay of solutions of the wave equation in a star-shaped domain with nonlinear boundary feedback. Asymptotic Anal. 7(3), 159–177 (1993)

    Article  MathSciNet  Google Scholar 

  13. Desch, W., Fasangova, E., Milota, J., Propst, G.: Stabilization through viscoelastic boundary: a semigroup approach. Semigroup Forum 80(3), 405–415 (2010)

    Article  MathSciNet  Google Scholar 

  14. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)

    MATH  Google Scholar 

  15. Fourrier, N., Lasiecka, I.: Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evol. Equ. Control Theory 2(4), 631–667 (2013)

    Article  MathSciNet  Google Scholar 

  16. Goldstein, G.R.: Derivation and physical interpretation of general boundary conditions. Adv. Differ. Equ. 11(4), 457–480 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Graber, P.J.: Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping. J. Evol. Equ. 12, 141–164 (2012)

    Article  MathSciNet  Google Scholar 

  18. Graber, P.J., Lasiecka, I.: Analyticity and Gevrey class regularity for a strongly damped wave equation with hyperbolic dynamic boundary conditions. Semigroup Forum 88(2), 333–365 (2014)

    Article  MathSciNet  Google Scholar 

  19. Graber, P.J., Said-Houari, B.: Existence and asymptotic behavior of the wave equation with dynamic boundary conditions. Appl. Math. Optim. 66(1), 81–122 (2012)

    Article  MathSciNet  Google Scholar 

  20. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Classics Appl. Math., vol. 69, SIAM, Philadelphia (2011)

  21. Hansen, S., Zuazua, E.: Exact controllability and stabilization of a vibrating string with an interior point mass. SIAM J. Control Optim. 33(5), 1357–1391 (1995)

    Article  MathSciNet  Google Scholar 

  22. Jiao, Z., Xiao, T.-J.: Acoustic wave motions stabilized by boundary memory damping. Appl. Math. Lett. 57, 82–89 (2016)

    Article  MathSciNet  Google Scholar 

  23. Lagnese, J.: Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Differ. Equ. 50, 163–182 (1983)

    Article  MathSciNet  Google Scholar 

  24. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6(3), 507–533 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Lasiecka, I., Triggiani, R.: Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim. 25(2), 189–224 (1992)

    Article  MathSciNet  Google Scholar 

  26. Lasiecka, I., Lions, J.L., Triggiani, R.: Nonhomogeneous boundary value problems for second-order hyperbolic operators. J. Math. Pures Appl. 65, 149–192 (1986)

    MathSciNet  MATH  Google Scholar 

  27. Lee, E.B., You, Y.C.: Stabilization of a hybrid (string/point mass) system. In: Proc. Fifth Int. Conf. Syst. Eng.(Dayton, Ohio, EUA) (1987)

  28. Li, C., Jin, K.-P.: Asymptotics for 2-D wave equations with Wentzell boundary conditions in the square. Math. Methods Appl. Sci. 44, 265–273 (2021). https://doi.org/10.1002/mma.6729

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, C., Xiao, T.-J.: A note on the IBVP for wave equations with dynamic boundary conditions. Bound. Value Probl. 2016, 34 (2016)

    Article  MathSciNet  Google Scholar 

  30. Li, C., Xiao, T.-J.: Asymptotics for wave equations with Wentzell boundary conditions and boundary damping. Semigroup Forum 94(3), 520–531 (2017)

    Article  MathSciNet  Google Scholar 

  31. Li, C., Xiao, T.-J.: Polynomial stability for wave equations with Wentzell boundary conditions. J. Nonlinear Convex Anal. 18(10), 1801–1814 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Li, C., Liang, J., Xiao, T.-J.: Boundary stabilization for wave equations with damping only on the nonlinear Wentzell boundary. Nonlinear Anal. 164, 155–175 (2017)

    Article  MathSciNet  Google Scholar 

  33. Li, C., Liang, J., Xiao, T.-J.: Dynamical behaviors of solutions to nonlinear wave equations with vanishing local damping and Wentzell boundary conditions. Z. Angew. Math. Phys. 69, 102 (2018)

    Article  MathSciNet  Google Scholar 

  34. Li, C., Liang, J., Xiao, T.-J.: Asymptotic behaviours of solutions for wave equations with damped Wentzell boundary conditions but no interior damping. J. Differ. Equ. 271, 76–106 (2021)

    Article  MathSciNet  Google Scholar 

  35. Littman, W., Liu, B.: On the spectral properties and stabilization of acoustic flow. SIAM J. Appl. Math. 59, 17–34 (1999)

    MathSciNet  MATH  Google Scholar 

  36. Littman, W., Markus, L.: Exact boundary controllability of a hybrid system of elasticity. Arch. Ration. Mech. Anal. 103, 193–236 (1988)

    Article  MathSciNet  Google Scholar 

  37. Littman, W., Markus, L.: Stabilization of a hybrid system of elasticity by feedback boundary damping. Annali di Matematica 152, 281–330 (1988)

    Article  MathSciNet  Google Scholar 

  38. Liu, B.: Exact controllability of a hybrid system, membrane with strings, on general polygon domains. J. Dyn. Control Syst. 4(1), 29–47 (1998)

    Article  MathSciNet  Google Scholar 

  39. Morgul, O., Rao, B.P., Conrad, F.: On the stabilization of a cable with a tip mass. IEEE Trans. Automat. Control 39(10), 2140–2145 (1994)

    Article  MathSciNet  Google Scholar 

  40. Nicaise, S., Laoubi, K.: Polynomial stabilization of the wave equation with Ventcel’s boundary conditions. Math. Nachr. 10, 1428–1438 (2010)

    Article  MathSciNet  Google Scholar 

  41. Triggiani, R.: Wave equation on a bounded domain with boundary dissipation: An operator approach. J. Math. Anal. Appl. 137(2), 438–461 (1989)

    Article  MathSciNet  Google Scholar 

  42. Xiao, T.-J., Liang, J.: Nonautonomous semilinear second order evolution equations with generalized Wentzell boundary conditions. J. Differ. Equ. 252(6), 3953–3971 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thank the reviewers very much for their truly professional and valuable comments and suggestions, especially for offering a more elementary and insightful method to prove Proposition 3.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research is supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ19A010009) and National Natural Science Foundation of China (Grant Nos. 12101167, 11947004)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C. Asymptotics for Wave Equations with Damping Only on the Dynamical Boundary. Appl Math Optim 84 (Suppl 2), 2011–2026 (2021). https://doi.org/10.1007/s00245-021-09818-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09818-z

Keywords

Navigation