Skip to main content
Log in

Practical Considerations for the Clinical Application of Bone Turnover Markers in Osteoporosis

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone turnover markers (BTMs) are released during the bone remodelling cycle and are measurable in blood or urine, reflecting bone remodelling rate. They have been useful in elucidating the pharmacodynamics and effectiveness of osteoporosis medication in clinical trials and are increasingly used in routine clinical management of osteoporosis, especially for monitoring therapy, in addition to their use in other metabolic bone disease such as Paget’s disease of bone and osteomalacia. Serum β isomerised C-terminal telopeptide of type I collagen and pro-collagen I N-terminal propeptide have been designated as reference BTMs for use in osteoporosis. In addition, bone-specific isoenzyme of alkaline phosphatase (B-ALP) secreted by osteoblasts and tartrate-resistant acid phosphatase 5b (TRACP-5b) secreted by osteoclasts are also found to be specific markers of bone formation and resorption, respectively. The concentrations of the latter enzymes in blood measured by immunoassay provide reliable measures of bone turnover even in the presence of renal failure. B-ALP is recommended for use in the assessment of renal bone disease of chronic kidney disease, and TRACP-5b shows promise as a marker of bone resorption in that condition. BTMs in blood do not suffer from biological variation to the same extent as the older BTMs that were measured in urine. Appropriate patient preparation and sample handling are important in obtaining accurate measures of BTMs for clinical use. Reference change values and treatment targets have been determined for the reference BTMs for their use in monitoring osteoporosis treatment. Further ongoing studies will enhance their clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J (2000) The use of biochemical markers of bone turnover in osteoporosis. Osteoporos Int 11:S2–S17

    Article  Google Scholar 

  2. Vasikaran S, Cooper C, Eastell R et al (2011) International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med 49:1271–1274

    Article  CAS  Google Scholar 

  3. Ralston SH, Corral-Gudino L, Cooper C et al (2019) Diagnosis and management of Paget’s disease of bone in adults: a clinical guideline. J Bone Miner Res 34:579–604

    Article  Google Scholar 

  4. Peach H, Compston JE, Vedi S, Horton LWJ (1982) Value of plasma calcium, phosphate, and alkaline phosphatase measurements in the diagnosis of histological osteomalacia. Clin Pathol 35:625–630. https://doi.org/10.1210/jcem.77.4.8104954

    Article  CAS  Google Scholar 

  5. Nizet A, Cavalier E, Stenvinkel P, Haarhaus M, Magnusson P (2020) Bone alkaline phosphatase: an important biomarker in chronic kidney disease—mineral and bone disorder. Clin Chim Acta 501:198–206. https://doi.org/10.1016/j.cca.2019.11.012

    Article  CAS  Google Scholar 

  6. Li CY, Yam LT, Lam KW (1970) Acid phosphatase isoenzyme in human leukocytes in normal and pathologic conditions. J Histochem Cytochem 18:473–481. https://doi.org/10.1177/18.7.473

    Article  CAS  Google Scholar 

  7. Halleen JM, Ylipahkala H, Alatalo SL et al (2002) Serum tartrate-resistant acid phosphatase 5b, but not 5a, correlates with other markers of bone turnover and bone mineral density. Calcif Tissue Int 71(1):20–25. https://doi.org/10.1007/s00223-001-2122-7

    Article  CAS  Google Scholar 

  8. Janckila AJ, Yam LT (2009) Biology and clinical significance of tartrate-resistant acid phosphatases: new perspectives on an old enzyme. Calcif Tissue Int 85:465–483. https://doi.org/10.1007/s00223-009-9309-8

    Article  CAS  Google Scholar 

  9. Vääräniemi J, Halleen JM, Kaarlonen K et al (2004) Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res 19:1432–1440. https://doi.org/10.1359/JBMR.040603

    Article  CAS  Google Scholar 

  10. Power MJ, Fottrell PF (1991) Osteocalcin: diagnostic methods and clinical applications. Crit Rev Clin Lab Sci 28(4):287–335. https://doi.org/10.3109/10408369109106867

    Article  CAS  Google Scholar 

  11. Wei J, Karsenty G (2015) An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord 16:93–98. https://doi.org/10.1007/s11154-014-9307-7

    Article  CAS  Google Scholar 

  12. Siebel MJ (2005) Biochemical markers of bone turnover part I: biochemistry and variability. Clin Biochem Rev 26:97–122

    Google Scholar 

  13. Koivula MK, Risteli L, Risteli J (2012) Measurement of aminoterminal propeptide of type I procollagen (PINP) in serum. Clin Biochem 45:920–927. https://doi.org/10.1016/j.clinbiochem.2012.03.023

    Article  CAS  Google Scholar 

  14. Melkko J, Hellevik T, Risteli L, Risteli J, Smedsrød B (1994) Clearance of NH2-terminal propeptides of types I and III procollagen is a physiological function of the scavenger receptor in liver endothelial cells. J Exp Med 179:405–412. https://doi.org/10.1084/jem.179.2.405

    Article  CAS  Google Scholar 

  15. Saunders PTK, Renegar RH, Raub TJ et al (1985) The carbohydrate structure of porcine uteroferrin and the role of the high mannose chains in promoting uptake by the reticuloendothelial cells of the fetal liver. J Biol Chem 260:3658–3665

    Article  CAS  Google Scholar 

  16. Halleen J, Hentunen TA, Hellman J, Väänänen HK (1996) Tartrate-resistant acid phosphatase from human bone: purification and development of an immunoassay. J Bone Miner Res 11:1444–1452. https://doi.org/10.1002/jbmr.5650111011

    Article  CAS  Google Scholar 

  17. Chu P, Chao TY, Lin YF, Janckila AJ, Yam LT (2003) Correlation between histomorphometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am J Kidney Dis 41:1052–1059. https://doi.org/10.1016/S0272-6386(03)00203-8

    Article  CAS  Google Scholar 

  18. Hannon RA, Clowes JA, Eagleton AC, Al Hadari A, Eastell R, Blumsohn A (2004) Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone 34:187–194. https://doi.org/10.1016/j.bone.2003.04.002

    Article  CAS  Google Scholar 

  19. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group (2011) KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 7(1):1–59. https://doi.org/10.1016/j.kisu.2017.04.001

    Article  Google Scholar 

  20. Fukumoto S, Ozono K, Michigami T et al (2015) Pathogenesis and diagnostic criteria for rickets and osteomalacia—proposal by an expert panel supported by the Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research, and the Japan Endocrine Society. J Bone Miner Metab 33(5):467–473. https://doi.org/10.1007/s00774-015-0698-7

    Article  Google Scholar 

  21. Camacho PM, Petak SM, Binkley N et al (2020) American Association of Clinical Endocrinologists/American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis—2020 update. Endocr Pract 26(Suppl 1):1–46

    Article  Google Scholar 

  22. National Kidney Foundation (2007) KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis 49(Suppl 2):S12-154

    Google Scholar 

  23. Vasikaran SD, McCloskey EV, Kahn S, Kanis JA (1994) Intra-individual variation in fasting urinary calcium- and hydroxyproline-creatinine ratios measured in metabolic bone clinic patients as both outpatients and inpatients. Ann Clin Biochem 31:272–276. https://doi.org/10.1177/000456329403100310

    Article  CAS  Google Scholar 

  24. Beck-Jensen JE, Kollerup G, Sørensen HA, Pors Nielsen S, Sørensen OH (1997) A single measurement of biochemical markers of bone turnover has limited utility in the individual person. Scand J Clin Lab Invest 57(4):351–359. https://doi.org/10.3109/00365519709099408

    Article  CAS  Google Scholar 

  25. Cavalier E, Lukas P, Bottani M, European Federation of Clinical Chemistry and Laboratory Medicine Working Group on Biological Variation and IOF-IFCC Committee on Bone Metabolism et al (2020) European Biological Variation Study (EuBIVAS): within- and between-subject biological variation estimates of β-isomerized C-terminal telopeptide of type I collagen (β-CTX), N-terminal propeptide of type I collagen (PINP), osteocalcin, intact fibroblast growth factor 23 and uncarboxylated-unphosphorylated matrix-Gla protein—a cooperation between the EFLM Working Group on Biological Variation and the International Osteoporosis Foundation-International Federation of Clinical Chemistry Committee on Bone Metabolism. Osteoporos Int 31:1461–1470. https://doi.org/10.1007/s00198-020-05362-8

    Article  CAS  Google Scholar 

  26. Szulc P, Naylor K, Hoyle NR et al (2017) Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int 28:2541–2556

    Article  CAS  Google Scholar 

  27. Bhattoa HP, Cavalier E, Eastell R, IFCC-IOF Committee for Bone Metabolism et al (2021) Analytical considerations and plans to standardize or harmonize assays for the reference bone turnover markers PINP and β-CTX in blood. Clin Chim Acta 515:16–20. https://doi.org/10.1016/j.cca.2020.12.023

    Article  CAS  Google Scholar 

  28. Ohashi T, Igarashi Y, Mochizuki Y et al (2007) Development of a novel fragments absorbed immunocapture enzyme assay system for tartrate-resistant acid phosphatase 5b. Clin Chim Acta 376(1–2):205–20512. https://doi.org/10.1016/j.cca.2006.08.021

    Article  CAS  Google Scholar 

  29. Nakanishi M, Yoh K, Miura T, Ohasi T, Rai SK, Uchida K (2000) Development of a kinetic assay for band 5b tartrate-resistant acid phosphatase activity in serum. Clin Chem 46(4):469–473

    Article  CAS  Google Scholar 

  30. Halleen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Väänänen HK (2000) Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 15:1337–1345. https://doi.org/10.1359/jbmr.2000.15.7.1337

    Article  CAS  Google Scholar 

  31. Ylipahkala H, Fagerlund KM, Janckila AJ, Houston B, Laurie D, Halleen JM (2009) Specificity and clinical performance of two commercial TRACP 5b immunoassays. Clin Lab 55:223–228

    CAS  Google Scholar 

  32. Morris HA, Eastell R, Jorgensen NR, IFCC-IOF Working Group for Standardisation of Bone Marker Assays (WG-BMA), et al (2017) Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clin Chim Acta 467:34–41. https://doi.org/10.1016/j.cca.2016.06.036

  33. Jørgensen NR, Møllehave LT, Hansen YBL, Quardon N, Lylloff L, Linneberg A (2017) Comparison of two automated assays of BTM (CTX and P1NP) and reference intervals in a Danish population. Osteoporos Int 28:2103–2113

    Article  Google Scholar 

  34. Tokida R, Uehara M, Nakano M et al (2021) Reference values for bone metabolism in a Japanese cohort survey randomly sampled from a basic elderly resident registry. Sci Rep 11(1):7822. https://doi.org/10.1038/s41598-021-87393-7

    Article  CAS  Google Scholar 

  35. Kikuchi W, Ichihara K, Mori K, Shimizu Y (2021) Biological sources of variations of tartrate-resistant acid phosphatase 5b in a healthy Japanese population. Ann Clin Biochem 58(4):358–367. https://doi.org/10.1177/00045632211003941

    Article  CAS  Google Scholar 

  36. Nishizawa Y, Miura M, Ichimura S, from the Japan Osteoporosis Society Bone Turnover Marker Investigation Committee, et al (2019) Executive summary of the Japan Osteoporosis Society Guide for the use of bone turnover markers in the diagnosis and treatment of osteoporosis (2018 edition). Clin Chim Acta 498:101–107. https://doi.org/10.1016/j.cca.2019.08.012

  37. Eastell R, Pigott T, Gossiel F, Naylor KE, Walsh JS, Peel NFA (2018) Diagnosis of endocrine disease: bone turnover markers: are they clinically useful? Eur J Endocrinol 178:R19–R31. https://doi.org/10.1530/EJE-17-0585

    Article  CAS  Google Scholar 

  38. Lorentzon M, Branco J, Brandi ML et al (2019) Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis. Adv Ther 36:2811–2824. https://doi.org/10.1007/s12325-019-01063-9

    Article  Google Scholar 

  39. Tan RZ, Loh TP, Vasikaran S (2020) Bone turnover marker monitoring in osteoporosis treatment response. Eur J Endocrinol 183:C5–C7. https://doi.org/10.1530/EJE-19-0970

    Article  CAS  Google Scholar 

  40. Naylor KE, Jacques RM, Paggiosi M et al (2016) Response of bone turnover markers to three oral bisphosphonate therapies in postmenopausal osteoporosis: the TRIO study. Osteoporos Int 27:21–31. https://doi.org/10.1007/s00198-015-3145-7

    Article  CAS  Google Scholar 

  41. Krege JH, Lane NE, Harris JM, Miller PD (2014) PINP as a biological response marker during teriparatide treatment for osteoporosis. Osteoporos Int 25:2159–2171. https://doi.org/10.1007/s00198-014-2646-0

    Article  CAS  Google Scholar 

  42. Adler RA, El-Hajj Fuleihan G, Bauer DC et al (2016) Managing osteoporosis in patients on long-term bisphosphonate treatment: report of a Task Force of the American Society for Bone and Mineral Research. J Bone Miner Res 31(1):16–35. https://doi.org/10.1002/jbmr.2708

    Article  CAS  Google Scholar 

  43. Tsourdi E, Zillikens MC, Meier C et al (2020) Fracture risk and management of discontinuation of denosumab therapy: a systematic review and position statement by ECTS. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgaa756

    Article  Google Scholar 

  44. Kobayakawa T, Suzuki T, Nakano M et al (2021) Real-world effects and adverse events of romosozumab in Japanese osteoporotic patients: a prospective cohort study. Bone Rep 14:101068. https://doi.org/10.1016/j.bonr.2021.101068

    Article  CAS  Google Scholar 

  45. Tsuchiya K, Ishikawa K, Kudo Y et al (2021) Analysis of the subsequent treatment of osteoporosis by transitioning from bisphosphonates to denosumab, using quantitative computed tomography: a prospective cohort study. Bone Rep 14:101090. https://doi.org/10.1016/j.bonr.2021.101090

    Article  CAS  Google Scholar 

  46. Mori Y, Kasai H, Ose A et al (2018) Modeling and simulation of bone mineral density in Japanese osteoporosis patients treated with zoledronic acid using tartrate-resistant acid phosphatase 5b, a bone resorption marker. Osteoporos Int 29:1155–1163. https://doi.org/10.1007/s00198-018-4376-1

    Article  CAS  Google Scholar 

  47. Kasai H, Mori Y, Ose A, Shiraki M, Tanigawara Y (2021) Prediction of fracture risk from early-stage bone markers in patients with osteoporosis treated with once-yearly administered zoledronic acid. J Clin Pharmacol 61:606–613

    Article  CAS  Google Scholar 

  48. Kunizawa K, Hiramatsu R, Hoshino J et al (2020) Denosumab for dialysis patients with osteoporosis: a cohort study. Sci Rep 10:2496. https://doi.org/10.1038/s41598-020-59143-8

    Article  CAS  Google Scholar 

  49. Moe S, Drüeke T, Cunningham J et al (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 69:1945–1953. https://doi.org/10.1038/sj.ki.5000414

    Article  CAS  Google Scholar 

  50. Sprague SM, Bellorin-Font E, Jorgetti V et al (2016) Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis 67:559–566. https://doi.org/10.1053/j.ajkd.2015.06.023

    Article  Google Scholar 

  51. Salam S, Gallagher O, Gossiel F et al (2018) Diagnostic accuracy of biomarkers and imaging for bone turnover in renal osteodystrophy. J Am Soc Nephrol 29:1557–1565. https://doi.org/10.1681/ASN.2017050584

    Article  CAS  Google Scholar 

  52. Seifert ME, Hruska KA (2016) The kidney-vascular-bone axis in the chronic kidney disease-mineral bone disorder. Transplantation 100:497–505. https://doi.org/10.1097/TP.0000000000000903

    Article  CAS  Google Scholar 

  53. Delanaye P, Souberbielle J-C, Lafage-Proust M-H et al (2014) Can we use circulating biomarkers to monitor bone turnover in CKD haemodialysis patients? Hypotheses and facts. Nephrol Dial Transplant 29:997–1004. https://doi.org/10.1093/ndt/gft275

    Article  CAS  Google Scholar 

  54. Magnusson P, Sharp CA, Magnusson M et al (2001) Effect of chronic renal failure on bone turnover and bone alkaline phosphatase isoforms. Kidney Int 60:257–265. https://doi.org/10.1046/j.1523-1755.2001.00794.x

    Article  CAS  Google Scholar 

  55. Tridimas A, Milan A, Marks E (2021) Assessing bone formation in patients with chronic kidney disease using procollagen type I N-terminal propeptide (PINP): the choice of assay makes a difference. Ann Clin Biochem 58:528–536. https://doi.org/10.1177/00045632211025567

    Article  CAS  Google Scholar 

  56. Cavalier E, Lukas P, Carlisi A et al (2013) Aminoterminal propeptide of type I procollagen (PINP) in chronic kidney disease patients: the assay matters. Clin Chim Acta 425:117–118. https://doi.org/10.1016/j.cca.2013.07.016

    Article  CAS  Google Scholar 

  57. Yamada S, Inaba M, Kurajoh M et al (2008) Utility of serum tartrate-resistant acid phosphatase (TRACP5b) as a bone resorption marker in patients with chronic kidney disease: independence from renal dysfunction. Clin Endocrinol 69:189–196. https://doi.org/10.1111/j.1365-2265.2008.03187.x

    Article  CAS  Google Scholar 

  58. Malluche HH, Davenport DL, Cantor T, Monier-Faugere M-C (2014) Bone mineral density and serum biochemical predictors of bone loss in patients with CKD on dialysis. Clin J Am Soc Nephrol 9:1254–1262. https://doi.org/10.2215/CJN.09470913

    Article  CAS  Google Scholar 

  59. Yamada S, Tsuruya K, Yoshida H et al (2013) The clinical utility of serum tartrate-resistant acid phosphatase 5b in the assessment of bone resorption in patients on peritoneal dialysis. Clin Endocrinol (Oxf) 78:844–851. https://doi.org/10.1111/cen.1207

    Article  CAS  Google Scholar 

  60. Shidara K, Inaba M, Okuno S et al (2008) Serum levels of TRAP5b, a new bone resorption marker unaffected by renal dysfunction, as a useful marker of cortical bone loss in hemodialysis patients. Calcif Tissue Int 82:278–287. https://doi.org/10.1007/s00223-008-9127-4

    Article  CAS  Google Scholar 

  61. Evenepoel P, Claes K, Meijers B et al (2020) Natural history of mineral metabolism, bone turnover and bone mineral density in de novo renal transplant recipients treated with a steroid minimization immunosuppressive protocol. Nephrol Dial Transplant 35:697–705. https://doi.org/10.1093/ndt/gfy306

    Article  CAS  Google Scholar 

  62. Suzuki H, Kihara M, Mano S et al (2017) Efficacy and safety of denosumab for the treatment of osteoporosis in patients with chronic kidney disease. J Clin Exp Nephrol 2:1–5. https://doi.org/10.21767/2472-5056.100030

    Article  Google Scholar 

  63. Ruggiero SL, Dodson TB, Fantasia J, American Association of Oral and Maxillofacial Surgeons et al (2014) American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw—2014 update. J Oral Maxillofac Surg 72:1938–1956. https://doi.org/10.1016/j.joms.2014.04.031

    Article  Google Scholar 

  64. Shane E, Burr D, Ebeling PR et al (2010) Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 25:2267–2294

    Article  Google Scholar 

  65. Marx RE, Cillo JE Jr, Ulloa JJ (2007) Oral bisphosphonate-induced osteonecrosis: risk factors, prediction of risk using serum CTX testing, prevention, and treatment. J Oral Maxillofac Surg 65:2397–2410. https://doi.org/10.1016/j.joms.2007.08.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Samuel D. Vasikaran.

Ethics declarations

Disclosures

EC is a consultant for Diasorin, IDS, Fujirebio, Menarini and Nittobo. MM is a consulatant for Beckmann-Coulter Japan and Nittobo Medical. RP is a member of advisory board for Amgen Czech Republic and has received a speaker honorarium from Amgen, Takeda, Roche, DiaSorin, Abbott and Beckmann-Coulter. HB and SV have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasikaran, S.D., Miura, M., Pikner, R. et al. Practical Considerations for the Clinical Application of Bone Turnover Markers in Osteoporosis. Calcif Tissue Int 112, 148–157 (2023). https://doi.org/10.1007/s00223-021-00930-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00930-4

Keywords

Navigation