Skip to main content
Log in

The Utility of Biomarkers in Osteoporosis Management

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

The measurement of bone turnover markers is useful for the clinical investigation of patients with osteoporosis. Among the available biochemical markers, the measurements of serum procollagen type I N-terminal propeptide (PINP) and the crosslinked C-terminal telopeptide (serum CTX) have been recommended as reference markers of bone formation and bone resorption, respectively. The important sources of preanalytical and analytical variability have been identified for both markers, and precise measurement can now be obtained. Reference interval data for PINP and CTX have been generated across different geographical locations, which allows optimum clinical interpretation. However, conventional protein-based markers have some limitations, including a lack of specificity for bone tissue, and their inability to reflect osteocyte activity or periosteal metabolism. Thus, novel markers such as periostin, sclerostin and, sphingosine 1-phosphate have been developed to address some of these shortcomings. Recent studies suggest that the measurements of circulating microRNAs, a new class of marker, may represent early biological markers in osteoporosis. Bone markers have been shown to be a useful adjunct to bone mineral density for identifying postmenopausal women at high risk for fracture. Because levels of bone markers respond rapidly to both anabolic and anticatabolic drugs, they are very useful for investigating the mechanism of action of new therapies and, potentially, for predicting their efficacy to reduce fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Naylor K, Eastell R. Bone turnover markers: use in osteoporosis. Nat Rev Rheumatol. 2012;8:379–89.

    Article  CAS  PubMed  Google Scholar 

  2. Szulc P. The role of bone turnover markers in monitoring treatment in postmenopausal osteoporosis. Clin Biochem. 2012;45:907–19.

    Article  CAS  PubMed  Google Scholar 

  3. Henriksen K, Christiansen C, Karsdal MA. Role of biochemical markers in the management of osteoporosis. Climacteric. 2015;18(Suppl 2):10–8.

    Article  PubMed  CAS  Google Scholar 

  4. Vasikaran S, Eastell R, Bruyere O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22:391–420.

    Article  CAS  PubMed  Google Scholar 

  5. Johansson H, Odén A, Kanis JA, et al. Calcif Tissue Int. 2014;94:560–7.

    Article  CAS  PubMed  Google Scholar 

  6. Seeman E. The periosteum-a surface for all seasons. Osteoporos Int. 2007;18:123–8.

    Article  CAS  PubMed  Google Scholar 

  7. Szulc P, Garnero P, Marchand F, Duboeuf F, Delmas PD. Biochemical markers of bone formation reflect endosteal bone loss in elderly men: MINOS study. Bone. 2005;36:13–21.

    Article  CAS  PubMed  Google Scholar 

  8. Ninomiya JT, Tracy RP, Calore JD, Gendreau MA, Kelm RJ, Mann KG. Heterogeneity of human bone. J Bone Miner Res. 1990;9:933–8.

    Google Scholar 

  9. Merle B, Garnero P. The multiple facets of periostin in bone metabolism. Osteoporos Int. 2012;23:1199–212.

    Article  CAS  PubMed  Google Scholar 

  10. Bonnet N, Garnero P, Ferrari S. Periostin action in bone. Mol Cell Endocrinol. 2016;432:75–82.

    Article  CAS  PubMed  Google Scholar 

  11. Merle B, Bouet G, Rousseau J-C, Bertholon C, Garnero P. Periostin and transforming factor β-induced protein (TGFβIp) are both expressed by osteoblasts and osteoclasts. Cell Biol Int. 2014;38(3):398–404.

    Article  CAS  PubMed  Google Scholar 

  12. Bonnet N, Standley KN, Bianchi EN, et al. The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem. 2009;284:35939–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonnet N, Conway SJ, Ferrari SL. Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. Proc Natl Acad Sci USA. 2012;109:15048–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bonnet N, Lesclous P, Saffar JL, Ferrari S. Zoledronate effects on systemic and jaw osteopenia in ovariectomized periostin-deficient mice. PLoS One. 2013;8:e58726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kii I, Nishiyama T, Li M, Matsumoto K, Saito M, Amizuka N, et al. Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem. 2010;285:2028–39.

    Article  CAS  PubMed  Google Scholar 

  16. Maruhashi T, Kii I, Saito M, Kudo A. Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J Biol Chem. 2010;285:13294–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rousseau J-C, Sornay-Rendu E, Bertholon C, Chapurlat R, Garnero P. Serum periostin is associated with fracture risk in postmenopausal women: a 7 years prospective analysis of the OFELY study. J Clin Endocrinol Metab. 2014;99:2533–9.

    Article  CAS  PubMed  Google Scholar 

  18. Rousseau JC, Sornay-Rendu E, Bertholon C, Garnero P, Chapurlat R. Serum periostin is associated with prevalent knee osteoarthritis and disease incidence/progression in women: the OFELY study. Osteoarthr Cartil. 2015;23:1736–42.

    Article  CAS  PubMed  Google Scholar 

  19. Anastasilakis AD, Polyzos SA, Makras P, et al. Circulating periostin levels do not differ between postmenopausal women with normal and low bone mass and are not affected by zoledronic acid treatment. Horm Metab Res. 2014;46:145–9.

    CAS  PubMed  Google Scholar 

  20. Bonnet N, Biver E, Durosier C, Chevalley T, Rizzoli R, Ferrari S. Additive genetic effects on circulating periostin contribute to the heritability of bone microstructure. J Clin Endocrinol Metab. 2015;100(7):E1014–21.

    Article  CAS  PubMed  Google Scholar 

  21. Kim BJ, Rhee Y, Kim ch, et al. Plasma periostin associates significantly with non-vertebral but not vertebral fractures in postmenopausal women: clinical evidence for the different effects of periostin depending on the skeletal site. Bone. 2015;81:435–41.

    Article  CAS  PubMed  Google Scholar 

  22. Kühn B, del Monte F, Hajjar RJ, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13:962–9.

    Article  PubMed  CAS  Google Scholar 

  23. Uchida M, Shiraishi H, Ohta S, et al. Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012;46:677–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Masuoka M, Shiraishi H, Ohta S, et al. Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Invest. 2012;122:2590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gineyts E, Bonnet N, Bertholon C, et al. Preclinical and clinical evaluation of periostin as a biomarker of bone metastasis in breast cancer (submitted).

  26. Helali AM, Iti FM, Mohamed IN. Cathepsin K inhibitors: a novel target but promising approach in the treatment of osteoporosis. Curr Drug Targets. 2013;14:1591–600.

    Article  CAS  PubMed  Google Scholar 

  27. Dodds RA, James IE, Rieman D, et al. Human osteoclast cathepsin K is processed intracellularly prior to attachment and bone resorption. J Bone Miner Res. 2001;16:478–86.

    Article  CAS  PubMed  Google Scholar 

  28. Bossard MJ, Tomaszek TA, Thompson SK, et al. Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem. 1996;271:12517–24.

    Article  CAS  PubMed  Google Scholar 

  29. Meier C, Meinhardt U, Greenfield JR, et al. Serum cathepsin K concentrations reflect osteoclastic activity in women with postmenopausal osteoporosis and patients with Paget’s disease. Clin Lab. 2006;52:1–10.

    CAS  PubMed  Google Scholar 

  30. Skoumal M, Haberhauer G, Kolarz G, Hawa G, Woloszczuk W, Klingler A. Serum cathepsin K levels of patients with longstanding rheumatoid arthritis: correlation with radiological destruction. Arthritis Res Ther. 2005;7:R65–70.

    Article  CAS  PubMed  Google Scholar 

  31. Wendling D, Cedoz JP, Racadot E. Serum levels of MMP-3 and cathepsin K in patients with ankylosing spondylitis: effect of TNF alpha antagonist therapy. Joint Bone Spine. 2008;75:559–62.

    Article  CAS  PubMed  Google Scholar 

  32. Prezelj J, Ostanek B, Logar DB, Marc J, Hawa G, Kocjan T. Cathepsin K predicts femoral neck bone mineral density change in non osteoporotic peri- and early postmenopausal women. Menopause. 2008;15:369–73.

    Article  PubMed  Google Scholar 

  33. Munoz-Torres M, Reyes-Garcia R, Mezquita-Raya P, et al. Serum cathepsin K as a marker of bone metabolism in postmenopausal women treated with alendronate. Maturitas. 2009;64:188–92.

    Article  CAS  PubMed  Google Scholar 

  34. Adolf D, Wex T, Jahn O, et al. Serum cathepsin K levels are not suitable to differentiate women with chronic bone disorders such as osteopenia and osteoporosis from healthy pre- and postmenopausal women. Maturitas. 2012;71:169–72.

    Article  CAS  PubMed  Google Scholar 

  35. Sun S, Karsdal MA, Bay-Jensen AC, et al. The development and characterization of an ELISA specifically detecting the active form of cathepsin K. Clin Biochem. 2013;46:1601–6.

    Article  CAS  PubMed  Google Scholar 

  36. Kassahun K, McIntosh I, Koeplinger K, et al. Disposition and metabolism of the cathepsin K inhibitor odanacatib in humans. Drug Metab Dispos. 2014;42:818–27.

    Article  PubMed  CAS  Google Scholar 

  37. Cheng XW, Huang Z, Kuzuya M, Okumura K, Murohara T. Cysteine protease cathepsins in atherosclerosis-based vascular disease and its complications. Hypertension. 2011;58:97886.

    Google Scholar 

  38. Fujita M, Cheng XW, Inden Y, et al. Mechanisms with clinical implications for atrial fibrillation associated remodeling: cathepsin K expression, regulation, and therapeutic target and biomarker. J Am Heart Assoc. 2013;2:e000503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Barbarash OL, Lebedeva NB, Kokov AN, et al. Decreased cathepsin K plasma level may reflect an association of osteopoenia/osteoporosis with coronary atherosclerosis and coronary artery calcification in male patients with stable angina. Heart Lung Circ. 2016;25:691–7.

    Article  PubMed  Google Scholar 

  40. Kearns AE, Khosla S, Kostenuik P. RANKL and OPG regulation of bone remodeling in health and disease. Endocrinol Rev. 2008;29:155–92.

    Article  CAS  Google Scholar 

  41. Kaneko K, Kusunoki N, Hasunuma T, Kawai S. Changes of serum soluble receptor activator for nuclear factor-κB ligand after glucocorticoid therapy reflect regulation of its expression by osteoblasts. J Clin Endocrinol Metab. 2012;97:E1909–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stuss M, Rieske P, Cegłowska A, et al. Assessment of OPG/RANK/RANKL gene expression levels in peripheral blood mononuclear cells (PBMC) after treatment with strontium ranelate and ibandronate in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2013;98:E1007–11.

    Article  PubMed  Google Scholar 

  43. Findlay DM, Atkins GJ. Relationship between serum RANKL and RANKL in bone. Osteoporos Int. 2011;22:2597–602.

    Article  CAS  PubMed  Google Scholar 

  44. Rattazzi M, Faggin E, Buso R. Atorvastatin reduces circulating osteoprogenitor cells and T-Cell RANKL expression in osteoporotic women: implications for the bone-vascular axis. Cardiovasc Ther. 2016;34:13–20.

    Article  CAS  PubMed  Google Scholar 

  45. Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8:739–50.

    Article  CAS  PubMed  Google Scholar 

  46. Tian E, Zhan F, Walker R, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349:2483–94.

    Article  CAS  PubMed  Google Scholar 

  47. Voorzanger-Rousselot N, Goehrig D, Journe F, et al. Increased dickkopf-1 (Dkk-1) expression in breast cancer bone metastases. Br J Cancer. 2007;97:964–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Diarra D, Stolina M, Polzer K, Zwerina J, Ominski MS, Dwyer D. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13:156–63.

    Article  CAS  PubMed  Google Scholar 

  49. Lane NE, Nevitt MC, Lui LY, de Leon P, Corr M. Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum. 2007;56:3319–25.

    Article  CAS  PubMed  Google Scholar 

  50. Voorzanger-Rousselot N, Ben-Tabassi NC, Garnero P. Opposite relationships between circulating Dkk-1 and cartilage breakdown in patients with rheumatoid arthritis and knee osteoarthritis. Ann Rheum Dis. 2009;68:1513–4.

    Article  CAS  PubMed  Google Scholar 

  51. Butler JS, Murray DW, Hurson CJ, Obrien J, Doran PP, Obyrne JM. The role of Dkk1 in bone mass regulation: correlating serum Dkk1 expression with bone mineral density. J Orthop Res. 2011;29:414–8.

    Article  PubMed  Google Scholar 

  52. Anastasilakis AD, Polyzos SA, Avramidis A, Toulis KA, Papatheodorou A, Terpos E. The effect of teriparatide on serum Dickkopf-1 levels in postmenopausal women with established osteoporosis. Clin Endocrinol. 2010;72:752–7.

    Article  CAS  Google Scholar 

  53. Gifre L, Ruiz-Gaspà S, Monegal A, et al. Effect of glucocorticoid treatment on Wnt signalling antagonists (sclerostin and Dkk-1) and their relationship with bone turnover. Bone. 2013;57:272–6.

    Article  CAS  PubMed  Google Scholar 

  54. Gatti D, Viapiana O, Idolazzi L, Fracassi E, Rossini M, Adami S. The waning of teriparatide effect on bone formation markers in postmenopausal osteoporosis is associated with increasing serum levels of DKK1. J Clin Endocrinol Metab. 2011;96:1555–9.

    Article  CAS  PubMed  Google Scholar 

  55. Gatti D, Viapiana O, Idolazzi L, et al. Distinct effect of zoledronate and clodronate on circulating levels of DKK1 and sclerostin in women with postmenopausal osteoporosis. Bone. 2014;67:18992.

    Article  CAS  Google Scholar 

  56. Anastasilakis AD, Polyzos SA, Gkiomisi A, et al. Comparative effect of zoledronic acid versus denosumab on serum sclerostin and Dickkopf-1 levels of naive postmenopausal women with low bone mass: a randomized, head-to-head clinical trial. J Clin Endocrinol Metab. 2013;98:320612.

    Article  CAS  Google Scholar 

  57. Gatti D, Viapiana O, Fracassi E, et al. Sclerostin and DKK1 in postmenopausal women treated with denosumab. J Bone Miner Res. 2012;27:2259–63.

    Article  CAS  PubMed  Google Scholar 

  58. Adami G, Orsolini G, Adami S, et al. Effects of TNF Inhibitors on parathyroid hormone and Wnt signaling antagonists in rheumatoid arthritis. Calcif Tissue Int. 2016;99(4):360–4.

    Article  CAS  PubMed  Google Scholar 

  59. Heiland GR, Appel H, Poddubnyy D, et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis. 2012;71:572–4.

    Article  CAS  PubMed  Google Scholar 

  60. Rossini M, Viapiana O, Idolazzi L, et al. Higher level of dickkopf-1 is associated with low bone mineral density and higher prevalence of vertebral fractures in patients with ankylosing spondylitis. Calcif Tissue Int. 2016;98:438–45.

    Article  CAS  PubMed  Google Scholar 

  61. Voorzanger-Rousselot N, Goehrig D, Facon T, Clézardin P, Garnero P. Platelet is a major contributor to circulating levels of Dickkopf-1: clinical implications in patients with multiple myeloma. Br J Haematol. 2009;145:264–6.

    Article  CAS  PubMed  Google Scholar 

  62. During A, Penel G, Hardouin P. Understanding the local actions of lipids in bone physiology. Prog Lipid Res. 2015;59:126–46.

    Article  CAS  PubMed  Google Scholar 

  63. Grey A, Xu X, Hill B, et al. Osteoblastic cells express phospholipid receptors and phosphatases and proliferate in response to sphingosine-1-phosphate. Calcif Tissue Int. 2004;74:542–50.

    Article  CAS  PubMed  Google Scholar 

  64. Grey A, Chen Q, Callon K, Xu X, Reid IR, Cornish J. The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving G(i) proteins and phosphatidylinositol-3 kinase. Endocrinology. 2002;143:4755–63.

    Article  CAS  PubMed  Google Scholar 

  65. Roelofsen T, Akkers R, Beumer W, et al. Sphingosine-1-phosphate acts as a developmental stage specific inhibitor of platelet-derived growth factor-induced chemotaxis of osteoblasts. J Cell Biochem. 2008;105:1128–38.

    Article  CAS  PubMed  Google Scholar 

  66. Ryu J, Kim HJ, Chang EJ, Huang H, Banno Y. Kim HH Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J. 2006;25:5840–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ishii M, Egen JG, Klauschen F, et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature. 2009;458:524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ishii M, Kikuta J, Shimazu Y, Meier-Schellersheim M, Germain RN. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med. 2010;207:2793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee SH, Lee SY, Lee YS, et al. Higher circulating sphingosine 1-phosphate levels are associated with lower bone mineral density and higher bone resorption marker in humans. J Clin Endocrinol Metab. 2012;97:E1421–8.

    Article  CAS  PubMed  Google Scholar 

  70. Kim BJ, Koh JM, Lee SY, et al. Plasma sphingosine 1-phosphate levels and the risk of vertebral fracture in postmenopausal women. J Clin Endocrinol Metab. 2012;97:3807–14.

    Article  CAS  PubMed  Google Scholar 

  71. Bae SJ, Lee SH, Ahn SH, Kim HM, Kim BJ, Koh JM. The circulating sphingosine-1-phosphate level predicts incident fracture in postmenopausal women: a 3.5-year follow-up observation study. Osteoporos Int. 2016;27:2533–41.

    Article  CAS  PubMed  Google Scholar 

  72. Kim BJ, Shin KO, Kim H, et al. The effect of sphingosine-1-phosphate on bone metabolism in humans depends on its plasma/bone marrow gradient. J Endocrinol Invest. 2016;39:297–303.

    Article  CAS  PubMed  Google Scholar 

  73. Buchem FS, Hadders HN, Ubbens R. An uncommon familial systemic disease of the skeleton: hyperostosis corticalis generalisata familiaris. Acta Radiol. 1955;44:109–20.

    Article  Google Scholar 

  74. Beighton P, Barnard A, Hamersma H, Wouden A. The syndromic status of sclerosteosis and van Buchem disease. Clin Genet. 1984;25:175–81.

    Article  CAS  PubMed  Google Scholar 

  75. Hill SC, Stein SA, Dwyer A, Altman J, Dorwart R, Doppman J. Cranial CT findings in sclerosteosis. Am J Neuroradiol. 1986;7:505–11.

    CAS  PubMed  Google Scholar 

  76. Bezooijen RL, Bronckers AL, Gortzak RA, et al. Sclerostin in mineralized matrices and van Buchem disease. J Dent Res. 2009;88:569–74.

    Article  PubMed  CAS  Google Scholar 

  77. Li X, Zhang Y, Kang H, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280:19883–7.

    Article  CAS  PubMed  Google Scholar 

  78. Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem. 2005;280:26770–5.

    Article  CAS  PubMed  Google Scholar 

  79. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL dependent pathway. PLoS One. 2011;6:e25900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jinhu X, O’Brien CA. Osteocyte RANKL: new insights into the control of bone remodeling. J Bone Miner Res. 2012;27:499–505.

    Article  CAS  Google Scholar 

  81. McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370:412–20.

    Article  CAS  PubMed  Google Scholar 

  82. McColm J, Hu L, Womack T, Tang CC, Chiang AY. Single- and multiple-dose randomized studies of blosozumab, a monoclonal antibody against sclerostin in healthy postmenopausal women. J Bone Miner Res. 2014;29:935–43.

    Article  CAS  PubMed  Google Scholar 

  83. Recker RR, Benson CT, Matsumoto T, et al. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res. 2015;30:216–24.

    Article  CAS  PubMed  Google Scholar 

  84. Appelman-Dijkstra NM, Papapoulos SE. Sclerostin inhibition in the management of osteoporosis. Calcif Tissue Int. 2016;98:370–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Durosier C, van Lierop A, Ferrari S, Chevalley T, Papapoulos S, Rizzoli R. Association of circulating sclerostin with bone mineral mass, microstructure, and turnover biochemical markers in healthy elderly men and women. J Clin Endocrinol Metab. 2013;98:3873–83.

    Article  CAS  PubMed  Google Scholar 

  86. Costa AG, Cremers S, Dworakowski E, Lazaretti-Castro M, Bilezikian JP. Comparison of two commercially available ELISAs for circulating sclerostin. Osteoporos Int. 2014;25:1547–54.

    Article  CAS  PubMed  Google Scholar 

  87. Kirmani S, Amin S, McCready LK, et al. Sclerostin levels during growth in children. J Clin Endocrinol Metab. 2014;99:248–55.

    Article  CAS  Google Scholar 

  88. Mirza FS, Padhi ID, Raisz LG, Lorenzo JA. Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab. 2010;95:1991–7.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mödder UI, Hoey KA, Amin S, et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res. 2011;26:373–9.

    Article  PubMed  CAS  Google Scholar 

  90. Ardawi MS, Al-Kadi HA, Rouzi AA, Qari MH. Determinants of serum sclerostin in healthy pre- and postmenopausal women. J Bone Miner Res. 2011;26:2812–22.

    Article  CAS  PubMed  Google Scholar 

  91. Mödder UI, Clowes JA, Hoey K, et al. Regulation of circulating sclerostin levels by sex steroids in women and in men. J Bone Miner Res. 2011;26:373–9.

    Article  PubMed  CAS  Google Scholar 

  92. Arasu A, Cawthon PM, Lui LY, et al. Serum sclerostin and risk of hip fracture in older Caucasian women. J Clin Endocrinol Metab. 2012;97:2027–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ardawi MS, Rouzi AA, Al-Sibiani SA, Al-Senani NS, Qari MH, Mousa SA. High serum sclerostin predicts the occurrence of osteoporotic fractures in postmenopausal women: the CEOR study. J Bone Miner Res. 2012;27:3691–9.

    Article  CAS  Google Scholar 

  94. Garnero P, Sornay-Rendu E, Munoz F, Borel O, Chapurlat RD. Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int. 2013;24:489–94.

    Article  CAS  PubMed  Google Scholar 

  95. Szulc P, Bertholon C, Borel O, Marchand F, Chapurlat R. Lower fracture risk in older men with higher sclerostin concentration: a prospective analysis from the MINOS study. J Bone Miner Res. 2013;28:855–64.

    Article  CAS  PubMed  Google Scholar 

  96. Gennari L, Merlotti D, Valenti R, et al. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol Metab. 2012;97:1737–44.

    Article  CAS  PubMed  Google Scholar 

  97. García-Martín A, Rozas-Moreno P, Reyes-Garcían R, et al. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97:234–41.

    Article  PubMed  CAS  Google Scholar 

  98. Ardawi MS, Akhbar DH, Alshaikh A, et al. Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone. 2013;56:355–62.

    Article  CAS  PubMed  Google Scholar 

  99. Yamamoto M, Yamauchi M, Sugimoto T. Elevated sclerostin levels are associated with vertebral fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2013;98:4030–7.

    Article  CAS  PubMed  Google Scholar 

  100. Starup-Linde J, Vestergaard P. Biochemical bone turnover markers in diabetes mellitus: a systematic review. Bone. 2016;82:69–78.

    Article  CAS  PubMed  Google Scholar 

  101. Caira FC, Stock SR, Gleason TG, et al. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol. 2006;47:1707–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Roman-Garcia P, Carrillo-Lopez N, Fernandez-Martın JL, et al. High phosphorus diet induces vascular calcification, a related decrease in bone mass and changes in the aortic gene expression. Bone. 2010;46:121–8.

    Article  CAS  PubMed  Google Scholar 

  103. Hampson G, Edwards S, Conroy S, et al. The relationship between inhibitors of the Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in postmenopausal women. Bone. 2013;56:42–7.

    Article  CAS  PubMed  Google Scholar 

  104. Morales-Santana S, Garcia-Fontana B, Garcia-Martin A, et al. Atherosclerotic disease in type 2 diabetes is associated with an increase in sclerostin levels. Diabetes Care. 2013;36:1667–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Paccou J, Mentaverri R, Renard C, et al. The relationships between serum sclerostin, bone mineral density, and vascular calcification in rheumatoid arthritis. J Clin Endocrinol Metab. 2014;99:4740–8.

    Article  CAS  PubMed  Google Scholar 

  106. Thambiah S, Roplekar R, Manghat P, et al. Circulating sclerostin and Dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness. Calcif Tissue Int. 2012;90:473–80.

    Article  CAS  PubMed  Google Scholar 

  107. Evenepoel P, Goffin E, Meijers BJ, et al. Sclerostin serum levels and vascular calcification progression in prevalent renal transplant recipients. J Clin Endocrinol Metab. 2015;100:4669–76.

    Article  CAS  PubMed  Google Scholar 

  108. Lv W, Guan L, Zhang Y, Yu S, Cao B, Ji Y. Sclerostin as a new key factor in vascular calcification in chronic kidney disease stages 3 and 4. Int Urol Nephrol. 2016;48(12):2043–50.

    Article  CAS  PubMed  Google Scholar 

  109. Riminucci M, Collins MT, Fedarko NS, et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest. 2003;112:683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu S, Guo R, Simpson LG, Xiao ZS, Burnham CE, Quarles LD. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem. 2003;278:37419–26.

    Article  CAS  PubMed  Google Scholar 

  111. Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35.

    Article  CAS  PubMed  Google Scholar 

  112. Wang H, Yoshiko Y, Yamamoto R, et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res. 2008;23:939–48.

    Article  CAS  PubMed  Google Scholar 

  113. Kuro M. Klotho, phosphate and FGF23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol. 2013;9:65060.

    Google Scholar 

  114. Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:77074.

    Article  CAS  Google Scholar 

  115. Bonewald LF, Wacker MJ. FGF23 production by osteocytes. Pediatr Nephrol. 2013;28:563–8.

    Article  PubMed  Google Scholar 

  116. Larsson T, Marsell R, Schipani E, et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha I collagen promoter exhibit growth retardation, osteomalacia and disturbed phosphate homeostasis. Endocrinology. 2004;145:3087–94.

    Article  CAS  PubMed  Google Scholar 

  117. Komaba H. Fukagawa, M The role of FGF23 in CKD—with or without Klotho. Nat Rev Nephrol. 2012;8:484–90.

    Article  CAS  PubMed  Google Scholar 

  118. Mirza MA, Karlsson MK, Mellstrom D, et al. Serum fibroblast growth factor-23 (FGF-23) and fracture risk in elderly men. J Bone Miner Res. 2011;26:857–64.

    Article  PubMed  CAS  Google Scholar 

  119. Lane NE, Parimi N, Corr M, et al. Association of serum fibroblast growth factor 23 (FGF23) and incident fractures in older men: the Osteoporotic Fractures in Men (MrOS) study. J Bone Miner Res. 2013;28:2325–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hober O. Gene regulation by transcription factors and miRNAs. Science. 2008;319:1735–6.

    Google Scholar 

  121. Lian JB, Stein JS, van Wijnen AJ, et al. Micro RNA control of bone formation and homeostasis. Nat Rev Endocrinol. 2012;8:212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sugatani T, Hruska KA. Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem. 2009;284:4667–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. van Wijnen AJ, van de Peppel J, van Leueuwen JP, et al. Micro RNA functions and dysfunctions in osteoporosis. Curr Osteoporos Rep. 2013;11:72–82.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases—complex signatures for multifactorial diseases? Mol Cell Endocrinol. 2016;432:83–95.

    Article  CAS  PubMed  Google Scholar 

  125. Wang X, Guo B, Li Q, Peng J, et al. miR-214 targets ATF4 to inhibit bone formation. Nat Med. 2013;19:93–100.

    Article  PubMed  CAS  Google Scholar 

  126. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  127. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13:423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucl Acids Res. 2010;38:7248–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108:5003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3:e3148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shende VR, Goldrick MM, Ramani S, Earnest DJ. Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice. PLoS One. 2011;6:e22586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Witwer KW. XenomiRs and miRNA homeostasis in health and disease: evidence that diet and dietary miRNAs directly and indirectly influence circulating miRNA profiles. RNA Biol. 2012;9:1147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang Y, Li L, Moore BT, et al. MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. PLoS One. 2012;7:e34641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li H, Wang Z, Fu Q, Zhang J. Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers. 2014;19:553–6.

    Article  CAS  PubMed  Google Scholar 

  136. Chen C, Cheng P, Xie H, et al. MiRNA 503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res. 2014;29:338–47.

    Article  CAS  PubMed  Google Scholar 

  137. Seeliger C, Karpinski K, Haug AT, et al. Five freely circulating miRNAs and bone tissue miRNA are associated with osteoporotic fractures. J Bone Miner Res. 2014;29:1718–28.

    Article  CAS  PubMed  Google Scholar 

  138. Weilner S, Skalicky S, Salzer B. Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone. 2015;79:43–51.

    Article  CAS  PubMed  Google Scholar 

  139. Panach L, Mifsut D, Tarín JJ, Cano A, García-Pérez MÁ. Serum circulating microRNAs as biomarkers of osteoporotic fracture. Calcif Tissue Int. 2015;97:495–505.

    Article  CAS  PubMed  Google Scholar 

  140. Meng J, Zhang D, Pan N, et al. Identification of miR-194-5p as a potential biomarker for postmenopausal osteoporosis. PeerJ. 2015;3:e971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Heilmeier U, Hackl M, Skalicky S, et al. Serum microRNAs Are indicative of skeletal fractures in postmenopausal women with and without Type 2 Diabetes and influence osteogenic and adipogenic differentiation of adipose-tissue derived mesenchymal stem cells in vitro. J Bone Miner Res. 2016;31(12):2173–92.

    Article  CAS  PubMed  Google Scholar 

  142. Kocijan R, Muschitz C, Geiger E, et al. Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J Clin Endocrinol Metab. 2016;101:4125–34.

    Article  CAS  PubMed  Google Scholar 

  143. Garnero P. Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring. Mol Diagn Ther. 2008;12:157–70.

    Article  CAS  PubMed  Google Scholar 

  144. Naylor K, Eastell R. Bone turnover markers: use in osteoporosis. Nat Rev Rheumatol. 2012;8:379–89.

    Article  CAS  PubMed  Google Scholar 

  145. Hlaing TT, Compston JE. Biochemical markers of bone turnover—uses and limitations. Ann Clin Biochem. 2014;5:189–202.

    Article  Google Scholar 

  146. Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C. Circadian variation in the serum concentration of optimal C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone. 2002;31:57–61.

    Article  CAS  PubMed  Google Scholar 

  147. Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone. 2002;30:886–90.

    Article  CAS  PubMed  Google Scholar 

  148. Ivaska KK, Gerdhem P, Akesson K. Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res. 2007;22:1155–64.

    Article  CAS  PubMed  Google Scholar 

  149. Garnero P, Vergnaud P, Hoyle N. Evaluation of a fully automated serum assay for total N-terminal propeptide of type I collagen in postmenopausal osteoporosis. Clin Chem. 2008;54:188–96.

    Article  CAS  PubMed  Google Scholar 

  150. Michelsen J, Wallaschofski H, Friedrich N, et al. Reference intervals for serum concentrations of three bone turnover markers for men and women. Bone. 2013;57:399–404.

    Article  CAS  PubMed  Google Scholar 

  151. Glover SJ, Garnero P, Naylor K, Rogers A, Eastell R. Establishing a reference range for bone turnover markers in young, healthy women. Bone. 2008;42:623–30.

    Article  CAS  PubMed  Google Scholar 

  152. Adami S, Bianchi G, Brandi ML, et al. Determinants of bone turnover markers in healthy premenopausal women. Calcif Tissue Int. 2008;82:341–7.

    Article  CAS  PubMed  Google Scholar 

  153. Glover SJ, Gall M, Schoenborn-Kellenberger O, et al. Establishing a reference interval for bone turnover markers in 637 healthy, young, premenopausal women from the United Kingdom, France, Belgium, and the United States. J Bone Miner Res. 2009;24:389–97.

    Article  PubMed  Google Scholar 

  154. de Papp AE, Bone HG, Caulfield MP, et al. A cross-sectional study of bone turnover markers in healthy premenopausal women. Bone. 2007;40:1222–30.

    Article  PubMed  Google Scholar 

  155. Morris HA, Eastell R, Jorgesen NR, Cavalier E, Vasikaran S, Chubb SA, et al. Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clin Chim Acta. doi:10.1016/j.cca.2016.06.036.

  156. Biver E, Chopin F, Coiffier G, et al. Bone turnover markers for osteoporotic status assessment? A systematic review of their diagnosis value at baseline in osteoporosis. Joint Bone Spine. 2012;79:20–5.

    Article  PubMed  Google Scholar 

  157. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996;11:337–49.

    Article  CAS  PubMed  Google Scholar 

  158. Garnero P, Sornay-Rendu E, Duboeuf F, Delmas PD. Markers of bone turnover predict postmenopausal forearm bone loss over 4 years: the OFELY study. J Bone Miner Res. 1999;14:1614–21.

    Article  CAS  PubMed  Google Scholar 

  159. Chopin F, Biver E, Funck-Brentano T, et al. Prognostic interest of bone turnover markers in the management of postmenopausal osteoporosis. Joint Bone Spine. 2012;79:26–31.

    Article  PubMed  Google Scholar 

  160. Garnero P. Markers of bone turnover for the prediction of fracture risk. Osteoporos Int. 2000;11(Suppl 6):S55–65.

    Article  PubMed  Google Scholar 

  161. Garnero P, Hausherr E, Chapuy MC, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res. 1996;11:1531–8.

    Article  CAS  PubMed  Google Scholar 

  162. Johnell O, Oden A, De Laet C, Garnero P, Delmas PD, Kanis JA. Biochemical markers and the assessment of fracture probability. Osteoporos Int. 2002;13:523–6.

    Article  CAS  PubMed  Google Scholar 

  163. Ivaska KK, Gerdhem P, Väänänen HK, Akesson K, Obrant KJ. Bone turnover markers and prediction of fracture: a prospective follow-up study of 1040 elderly women for a mean of 9 years. J Bone Miner Res. 2010;25:393–403.

    Article  CAS  PubMed  Google Scholar 

  164. Bauer DC, Garnero P, Harrison SL, et al. Biochemical markers of bone turnover, hip bone loss, and fracture in older men: the MrOS study. J Bone Miner Res. 2009;24:2032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Finnes TE, Lofthus CM, Meyer HE, et al. Procollagen type 1 amino-terminal propeptide (P1NP) and risk of hip fractures in elderly Norwegian men and women. A NOREPOS study. Bone. 2014;64:1–7.

    Article  CAS  PubMed  Google Scholar 

  166. Chubb SA, Byrnes E, Manning L, et al. Reference intervals for bone turnover markers and their association with incident hip fractures in older men: the Health in Men study. J Clin Endocrinol Metab. 2015;100:90–9.

    Article  CAS  PubMed  Google Scholar 

  167. Yoshimura N, Muraki S, Oka H, Kawaguchi H, Nakamura K, Akune T. Biochemical markers of bone turnover as predictors of osteoporosis and osteoporotic fractures in men and women: 10-year follow-up of the Taiji cohort. Mod Rheumatol. 2011;21:608–20.

    Article  CAS  PubMed  Google Scholar 

  168. Dai Z, Wang R, Ang LW, Yuan JM, Koh WP. Bone turnover biomarkers and risk of osteoporotic hip fracture in an Asian population. Bone. 2016;83:171–7.

    Article  CAS  PubMed  Google Scholar 

  169. Bauer DC, Garnero P, Hochberg MC, et al. Pretreatment levels of bone turnover and the antifracture efficacy of alendronate: the fracture intervention trial. J Bone Miner Res. 2006;21:292–9.

    Article  CAS  PubMed  Google Scholar 

  170. Delmas PD, Licata AA, Reginster JY, et al. Fracture risk reduction during treatment with teriparatide is independent of pretreatment bone turnover. Bone. 2006;39:237–43.

    Article  CAS  PubMed  Google Scholar 

  171. Seibel MJ, Naganathan V, Barton I, Grauer A. Relationship between pretreatment bone resorption and vertebral fracture incidence in postmenopausal osteoporotic women treated with risedronate. J Bone Miner Res. 2004;19:323–9.

    Article  CAS  PubMed  Google Scholar 

  172. Eastell R, Vrijens B, Cahall DL, Ringe JD, Garnero P, Watts NB. Bone turnover markers and bone mineral density response with risedronate therapy: relationship with fracture risk and patient adherence. J Bone Miner Res. 2011;26:1662–9.

    Article  CAS  PubMed  Google Scholar 

  173. Clowes JA, Peel NF, Eastell R. The impact of monitoring on adherence and persistence with antiresorptive treatment for postmenopausal osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab. 2004;89:1117–23.

    Article  CAS  PubMed  Google Scholar 

  174. Silverman SL, Nasser K, Nattrass S, Drinkwater B. Impact of bone turnover markers and/or educational information on persistence to oral bisphosphonate therapy: a community setting-based trial. Osteoporos Int. 2012;23:1069–74.

    Article  CAS  PubMed  Google Scholar 

  175. Cremers S, Garnero P. Biochemical markers of bone turnover in the clinical development of drugs for osteoporosis and metastatic bone disease: potential uses and pitfalls. Drugs. 2006;66:2031–58.

    Article  CAS  PubMed  Google Scholar 

  176. Eisman JA, Bone HG, Hosking DJ, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res. 2011;26:242–51.

    Article  CAS  PubMed  Google Scholar 

  177. Jacques RM, Boonen S, Cosman F, et al. Relationship of changes in total hip bone mineral density to vertebral and nonvertebral fracture risk in women with postmenopausal osteoporosis treated with once-yearly zoledronic acid 5 mg: the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2012;27:1627–34.

    Article  CAS  PubMed  Google Scholar 

  178. Bruyère O, Detilleux J, Chines A, Reginster JY. Relationships between changes in bone mineral density or bone turnover markers and vertebral fracture incidence in patients treated with bazedoxifene. Calcif Tissue Int. 2012;91:244–9.

    Article  PubMed  CAS  Google Scholar 

  179. Eastell R, Barton I, Hannon RA, Chines A, Garnero P, Delmas PD. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res. 2003;18:1051–6.

    Article  CAS  PubMed  Google Scholar 

  180. Naylor KE, Jacques RM, Paggiosi M, et al. Response of bone turnover markers to three oral bisphosphonate therapies in postmenopausal osteoporosis: the TRIO study. Osteoporos Int. 2016;27:21–31.

    Article  CAS  PubMed  Google Scholar 

  181. Krege JH, Lane NE, Harris M, Miller PD. PINP as a biological response marker during teriparatide treatment for osteoporosis. Osteoporos Int. 2014;25:2159–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chen P, Satterwhite JH, Licata AA, et al. Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res. 2005;20:962–70.

    Article  CAS  PubMed  Google Scholar 

  183. Tsujimoto M, Chen P, Miyauchi A, Sowa H, Krege JH. PINP as an aid for monitoring patients treated with teriparatide. Bone. 2011;48:798–800.

    Article  CAS  PubMed  Google Scholar 

  184. Dempster DW, Zhou H, Recker RR, et al. Skeletal histomorphometry in subjects on teriparatide or zoledronic acid therapy (SHOTZ) study: a randomized controlled trial. J Clin Endocrinol Metab. 2012;97:2799–808.

    Article  CAS  PubMed  Google Scholar 

  185. Moore AE, Blake GM, Taylor KA, et al. Assessment of regional changes in skeletal metabolism following 3 and 18 months of teriparatide treatment. J Bone Miner Res. 2010;25:960–7.

    CAS  PubMed  Google Scholar 

  186. Keaveny TM, Donley DW, Hoffmann PF, Mitlak BH, Glass EV, San Martin JA. Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res. 2007;22:149–57.

    Article  CAS  PubMed  Google Scholar 

  187. Farahmand P, Marin F, Hawkins F, et al. Early changes in biochemical markers of bone formation during teriparatide therapy correlate with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis. Osteoporos Int. 2013;24:2971–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Garnero.

Ethics declarations

Conflicts of interest

Patrick Garnero has no conflicts of interest that are directly relevant to the content of this review.

Funding

No sources of funding were used to assist in the preparation of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garnero, P. The Utility of Biomarkers in Osteoporosis Management. Mol Diagn Ther 21, 401–418 (2017). https://doi.org/10.1007/s40291-017-0272-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-017-0272-1

Keywords

Navigation