Skip to main content

Advertisement

Log in

Osteoporosis: Investigations and Monitoring

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background:

Osteoporosis is characterized by microarchitectural disruption of the bone, decrease in bone mineral density, and increased skeletal fragility and risk of fracture. Osteoporosis occurs due to the decoupling of bone formation and bone resorption, with a significant increase in resorption. This review article focuses on the role of laboratory investigations in the diagnosis and monitoring of treatment in patients with osteoporosis.

Methods:

This review article collected literature from various databases using keywords such as ‘Laboratory investigations’, ‘Osteoporosis’, ‘Diagnosis’, ‘Monitoring’, and ‘Bone turnover markers’.

Results and Discussion:

Laboratory investigations, including serum calcium, alkaline phosphatase, vitamin D, and parathormone, are commonly performed tests to exclude secondary causes of osteoporosis and monitor the response to therapy. The biochemical markers of bone turnover are newly emerged tests for monitoring individual patients with osteoporosis. These markers are classified as bone formation and resorption markers, measurable in both serum and urine. The use of these markers is limited by biological and analytical variability. The International Federation of Clinical Chemistry and Laboratory Medicine and the International Osteoporosis Foundation recommend serum procollagen type 1 amino-terminal propeptide as the bone formation marker and β-form of C-terminal cross-linked telopeptide of type I collagen (β-CTx-1/β-CrossLaps) as the marker of choice, using standardized procedures. However, in specific cases, such as patients with chronic renal disease, CTx-1 is replaced by the resorption marker tartrate-resistant acid phosphatase 5b, as its levels are not affected by renal excretion.

Conclusion:

Bone turnover markers have emerged as tools for the assessment of osteoporosis, using standardized procedures, and are useful in monitoring therapy and treatment compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Source: Diez-Perez A, Naylor KE, Abrahamsen B, et al. International Osteoporosis Foundation and European Calcified Tissue Society Working Group. Recommendations for the screening of adherence to oral bisphosphonates. Osteoporos Int. 2017;28(3):767–774

Similar content being viewed by others

References

  1. Robbins & Cotran Pathologic Basis of Disease—10th edition [Internet]. https://shop.elsevier.com/books/robbins-and-cotran-pathologic-basis-of-disease/kumar/978-0-323-53113-9. Cited 4 July 2023.

  2. Wheater, G., Elshahaly, M., Tuck, S. P., Datta, H. K., & van Laar, J. M. (2013). The clinical utility of bone marker measurements in osteoporosis. Journal of Translational Medicine, 29(11), 201.

    Article  Google Scholar 

  3. Lee, J., & Vasikaran, S. (2012). Current recommendations for laboratory testing and use of bone turnover markers in management of osteoporosis. Annals of Laboratory Medicine, 32(2), 105–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. About | International Osteoporosis Foundation [Internet]. https://www.osteoporosis.foundation/health-professionals/about-osteoporosis. Cited 4 July 2023.

  5. Garnero, P. (2008). Biomarkers for osteoporosis management. Molecular Diagnosis & Therapy, 12(3), 157–170.

    Article  CAS  Google Scholar 

  6. Bone markers in osteoporosis: bone turnover markers, bone formation markers, bone resorption markers. 2022. https://emedicine.medscape.com/article/128567-overview?icd=login_success_email_match_norm. Cited 4 July 2023.

  7. Day, A. L., Morgan, S. L., & Saag, K. G. (2018). Hypophosphatemia in the setting of metabolic bone disease: Case reports and diagnostic algorithm. Therapeutic Advances in Musculoskeletal Disease., 10(7), 151–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holick, M. F., Binkley, N. C., Bischoff-Ferrari, H. A., Gordon, C. M., Hanley, D. A., Heaney, R. P., et al. (2011). Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. Journal of Clinical Endocrinology and Metabolism, 96(7), 1911–1930.

    Article  CAS  PubMed  Google Scholar 

  9. Carroll, M., Alliston, T., & Dole, N. (2023). The multifaceted effects of osteocytic TGFβ signaling on the skeletal and extraskeletal functions of bone. Current Osteoporosis Reports, 3, 1–2.

    Google Scholar 

  10. Rolighed, L., Rejnmark, L., & Christiansen, P. (2014). Bone involvement in primary hyperparathyroidism and changes after parathyroidectomy. European Journal of Endocrinology, 10(1), 84.

    Google Scholar 

  11. Shaker, J. L. (2009). Paget’s disease of bone: A review of epidemiology, pathophysiology and management. Therapeutic Advances in Musculoskeletal Diseases, 1(2), 107–125.

    Article  CAS  Google Scholar 

  12. Ganesan, K., Jandu, J. S., Anastasopoulou, C., Ahsun, S., & Roane, D. (2023). Secondary osteoporosis. In: StatPearls [Internet]. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK470166/. Cited 4 July 2023.

  13. Shetty, S., Kapoor, N., Bondu, J. D., Thomas, N., & Paul, T. V. (2016). Bone turnover markers: Emerging tool in the management of osteoporosis. Indian Journal of Endrocrinology and Metabolism, 20(6), 846.

    Article  Google Scholar 

  14. Barco, C. M., Arija, S. M., & Perez, M. R. (2012). Biochemical markers in osteoporosis: Usefulness in clinical practice. Reumatologia Clinica (English Edition)., 8(3), 149–152.

    Article  Google Scholar 

  15. Vasikaran, S., Eastell, R., Bruyere, O., Foldes, A. J., Garnero, P., Griesmacher, A., et al. (2011). Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards. Osteoporosis International, 22(2), 391–420.

    Article  CAS  PubMed  Google Scholar 

  16. Garnero, P., Vergnaud, P., & Hoyle, N. (2008). Evaluation of a fully automated serum assay for total N-terminal propeptide of type I collagen in postmenopausal osteoporosis. Clinical Chemistry, 54(1), 188–196.

    Article  CAS  PubMed  Google Scholar 

  17. Kuo, T. R., & Chen, C. H. (2017). Bone biomarker for the clinical assessment of osteoporosis: Recent developments and future perspectives. Biomark Res., 5(1), 1–9.

    Article  Google Scholar 

  18. Seibel, M. J. (2005). Biochemical markers of bone turnover part I: Biochemistry and variability. Clinical Biochemist Reviews, 26(4), 97.

    PubMed  PubMed Central  Google Scholar 

  19. Halleen, J. M. (2003). Tartrate-resistant acid phosphatase 5B is a specific and sensitive marker of bone resorption. Anticancer Research, 23(2A), 1027–1029.

    CAS  PubMed  Google Scholar 

  20. Habas Sr, E., Eledrisi, M., Khan, F., Elzouki, A. N., Khan, F. Y. (2021). Secondary hyperparathyroidism in chronic kidney disease: pathophysiology and management. Cureus, 13(7).

  21. Tu, K. N., Lie, J. D., Wan, C. K. V., Cameron, M., Austel, A. G., Nguyen, J. K., et al. (2018). Osteoporosis: a review of treatment options. P T., 43(2), 92–104.

    PubMed  PubMed Central  Google Scholar 

  22. Qvist, P., Christgau, S., Pedersen, B. J., Schlemmer, A., & Christiansen, C. (2002). Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): Effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone, 31(1), 57–61.

    Article  CAS  PubMed  Google Scholar 

  23. Ravn, P., Clemmesen, B., Riis, B. J., & Christiansen, C. (1996). The effect on bone mass and bone markers of different doses of ibandronate: A new bisphosphonate for prevention and treatment of postmenopausal osteoporosis: A 1-year, randomized, double-blind, placebo-controlled dose-finding study. Bone, 19(5), 527–533.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenquist, C., Fledelius, C., Christgau, S., Pedersen, B. J., Bonde, M., Qvist, P., et al. (1998). Serum CrossLaps One Step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. Clinical Chemistry, 44(11), 2281–2289.

    Article  CAS  PubMed  Google Scholar 

  25. Baxter, I., Rogers, A., Eastell, R., & Peel, N. (2013). Evaluation of urinary N-telopeptide of type I collagen measurements in the management of osteoporosis in clinical practice. Osteoporosis International, 24(3), 941–947.

    Article  CAS  PubMed  Google Scholar 

  26. Corder, C. J., Rathi, B. M., Sharif, S., & Leslie, S. W. (2023). (24-hour urine collection. In: StatPearls [Internet]. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK482482/. Cited 4 July 2023.

  27. Lorentzon, M., Branco, J., Brandi, M. L., Bruyère, O., Chapurlat, R., Cooper, C., Cortet, B., Diez-Perez, A., Ferrari, S., Gasparik, A., & Herrmann, M. (2019). Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis. Advances in Therapy, 36, 2811–2824.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marini, S., Barone, G., Masini, A., Dallolio, L., Bragonzoni, L., Longobucco, Y., & Maffei, F. (2020). The effect of physical activity on bone biomarkers in people with osteoporosis: A systematic review. Frontiers in Endocrinology, 23(11), 585689.

    Article  Google Scholar 

  29. Schlemmer, A., Hassager, C., Risteli, J., Risteli, L., Jensen, S. B., & Christiansen, C. (1993). Possible variation in bone resorption during the normal menstrual cycle. European Journal of Endocrinology, 129(5), 388–392.

    Article  CAS  Google Scholar 

  30. Scharla, S. H., Scheidt-Nave, C., Leidig, G., Woitge, H., Wuster, C., Seibel, M. J., et al. (1996). Lower serum 1-hydroxyvitamin D is associated with increased bone resorption markers and lower bone density at the proximal femur in normal females: A population-based study. Experimental and Clinical Endocrinology & Diabetes, 104(3), 289–292.

    Article  CAS  Google Scholar 

  31. Brown, J. P., Malaval, L., Chapuy, M. C., Delmas, P. D., Edouard, C., & Meunier, P. J. (1984). Serum bone Gla-protein: A specific marker for bone formation in postmenopausal osteoporosis. Lancet, 323(8386), 1091–1093.

    Article  Google Scholar 

  32. Delanghe, J., & Speeckaert, M. (2014). Preanalytical requirements of urinalysis. Biochemia Medica., 24(1), 89–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Afzal, A., Samee, A. M., Jilte, R. D., Islam, M. T., Manokar, A. M., & Razak, K. A. (2021). Battery thermal management: An optimization study of parallelized conjugate numerical analysis using Cuckoo search and Artificial bee colony algorithm. International Journal of Heat and Mass Transfer., 1(166), 120798.

    Article  Google Scholar 

  34. Szulc, P., Naylor, K., Hoyle, N. R., Eastell, R., & Leary, E. T. (2017). National Bone Health Alliance Bone Turnover Marker Project. Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporosis International, 28(9), 2541–2556.

    Article  CAS  PubMed  Google Scholar 

  35. Rosen, H. N., Moses, A. C., Garber, J., Ross, D. S., Lee, S. L., & Greenspan, S. L. (1998). Utility of biochemical markers of bone turnover in the follow-up of patients treated with bisphosphonates. Calcified Tissue International, 63, 363–368.

    Article  CAS  PubMed  Google Scholar 

  36. Sheu, A., & Diamond, T. (2016). Secondary osteoporosis. Australian Prescriber, 39(3), 85.

    PubMed  PubMed Central  Google Scholar 

  37. Glover, S. J., Eastell, R., McCloskey, E. V., Rogers, A., Garnero, P., Lowery, J., et al. (2009). Rapid and robust response of biochemical markers of bone formation to teriparatide therapy. Bone, 45(6), 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  38. Bauer, D. C., Black, D. M., Garnero, P., Hochberg, M., Ott, S., Orloff, J., et al. (2004). Fracture Intervention Trial Study Group. Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: the fracture intervention trial. Journal of Bone and Mineral Research, 19(8), 1250–1258.

    Article  PubMed  Google Scholar 

  39. Naylor, K. E., Jacques, R. M., Paggiosi, M., Gossiel, F., Peel, N. F., McCloskey, E. V., et al. (2016). Response of bone turnover markers to three oral bisphosphonate therapies in postmenopausal osteoporosis: The TRIO study. Osteoporosis International, 27(1), 21–31.

    Article  CAS  PubMed  Google Scholar 

  40. Sobh, M. M., Abdalbary, M., Elnagar, S., Nagy, E., Elshabrawy, N., Abdelsalam, M., et al. (2022). Secondary osteoporosis and metabolic bone diseases. Journal of Clinical Medicine, 11(9), 2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jorgensen, H. S., Behets, G., Viaene, L., Bammens, B., Claes, K., Meijers, B., et al. (2022). Diagnostic accuracy of noninvasive bone turnover markers in renal osteodystrophy. American Journal of Kidney Diseases, 79(5), 667–676.

    Article  PubMed  Google Scholar 

  42. Diez-Perez, A., Naylor, K. E., Abrahamsen, B., Agnusdei, D., Brandi, M. L., Cooper, C., et al. (2017). International osteoporosis foundation and european calcified tissue society working group. Recommendations for the screening of adherence to oral bisphosphonates. Osteoporosis International, 28(3), 767–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park, S. Y., Ahn, S. H., Yoo, J. I., Chung, Y. J., Jeon, Y. K., Yoon, B. H., et al. (2019). Position statement on the use of bone turnover markers for osteoporosis treatment. Journal of Bone Metabolism, 26(4), 213–224.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Crandall, C. J., Vasan, S., LaCroix, A., LeBoff, M. S., Cauley, J. A., Robbins, J. A., et al. (2018). Bone turnover markers are not associated with hip fracture risk: A case-control study in the Women’s Health Initiative. Journal of Bone and Mineral Research, 33(7), 1199–1208.

    Article  CAS  PubMed  Google Scholar 

  45. Ivaska, K. K., Gerdhem, P., Vaananen, H. K., Akesson, K., & Obrant, K. J. (2010). Bone turnover markers and prediction of fracture: A prospective follow-up study of 1040 elderly women for a mean of 9 years. Journal of Bone and Mineral Research, 25(2), 393–403.

    Article  CAS  PubMed  Google Scholar 

  46. Shiraki, M., Sugimoto, T., & Nakamura, T. (2013). Effects of a single injection of teriparatide on bone turnover markers in postmenopausal women. Osteoporosis International, 24, 219–226.

    Article  CAS  PubMed  Google Scholar 

  47. Lorentzon, M., Branco, J., Brandi, M. L., Bruyère, O., Chapurlat, R., Cooper, C., et al. (2019). Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis. Advances in Therapy, 36(10), 2811–2824.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Garnero, P., Sornay-Rendu, E., Claustrat, B., & Delmas, P. D. (2000). Biochemical markers of bone turnover endogenous hormones and the risk of fractures in postmenopausal women: The OFELY study. Journal of Bone and Mineral Research, 15(8), 1526–1536.

    Article  CAS  PubMed  Google Scholar 

  49. Bauer, D. C., Garnero, P., Harrison, S. L., Cauley, J. A., Eastell, R., Ensrud, K. E., et al. (2009). Biochemical markers of bone turnover, hip bone loss, and fracture in older men: The MrOS study. Journal of Bone and Mineral Research, 24(12), 2032–2038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ross, P. D., Kress, B. C., Parson, R. E., Wasnich, R. D., Armour, K. A., & Mizrahi, I. A. (2000). Serum bone alkaline phosphatase and calcaneus bone density predict fractures: A prospective study. Osteoporosis International, 11(1), 76–82.

    Article  CAS  PubMed  Google Scholar 

  51. Garnero, P., Hausherr, E., Chapuy, M. C., Marcelli, C., Grandjean, H., Muller, C., et al. (1996). Markers of bone resorption predict hip fracture in elderly women: The EPIDOS Prospective Study. Journal of Bone and Mineral Research, 11(10), 1531–1538.

    Article  CAS  PubMed  Google Scholar 

  52. McClung, M. R., Grauer, A., Boonen, S., Bolognese, M. A., Brown, J. P., Diez-Perez, A., et al. (2014). Romosozumab in postmenopausal women with low bone mineral density. New England Journal of Medicine, 370(5), 412–420.

    Article  CAS  PubMed  Google Scholar 

  53. Eastell, R., Christiansen, C., Grauer, A., Kutilek, S., Libanati, C., McClung, M. R., et al. (2011). Effects of denosumab on bone turnover markers in postmenopausal osteoporosis. Journal of Bone and Mineral Research, 26(3), 530–537.

    Article  CAS  PubMed  Google Scholar 

  54. Marques, E. A., Gudnason, V., Lang, T., Sigurdsson, G., Sigurdsson, S., Aspelund, T., et al. (2016). Association of bone turnover markers with volumetric bone loss, periosteal apposition, and fracture risk in older men and women: The AGES-Reykjavik longitudinal study. Osteoporosis International, 27(12), 3485–3494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ojeda-Bruno, S., Naranjo, A., Francisco-Hernandez, F., Erausquin, C., Rua-Figueroa, I., Quevedo, J. C., et al. (2011). Secondary prevention program for osteoporotic fractures and long-term adherence to bisphosphonates. Osteoporosis International, 22(6), 1821–1828.

    Article  CAS  PubMed  Google Scholar 

  56. Roberts, J., Castro, C., Moore, A. E., Fogelman, I., & Hampson, G. (2016). Changes in bone mineral density and bone turnover in patients on ‘drug holiday’following bisphosphonate therapy: Real-life clinic setting. Clinical Endocrinology, 84(4), 509–515.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renuka Panchagnula.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard statement

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchagnula, R., Amarnath, S.S. Osteoporosis: Investigations and Monitoring. JOIO 57 (Suppl 1), 70–81 (2023). https://doi.org/10.1007/s43465-023-01019-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-023-01019-w

Keywords

Navigation