Skip to main content

Advertisement

Log in

All-around characterization of brewers’ spent grain

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This work was to carry out a complete characterization of the brewers’ spent grains, determining its parameters: physical, chemical, thermal, morphological, structural, and surface, serving as a database for this specific material. The parameters of moisture, ash, protein, fat, reducing and non-reducing sugars, starch, crude fiber, acid and neutral detergent fiber, cellulose, lignin, hemicellulose, titratable acidity, pH, crude energy, N2 adsorption/desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and differential exploratory calorimetry analysis were determined. All the results obtained are consistent with the literature for those parameters. In addition to bringing results that are not commonly found in other works such as neutral detergent fiber, hemicellulose, microscopic images, elemental composition and phase transition of lignocellulosic species, which can bring positive impact to the scientific community, other authors can consult this study to obtain the data they need for the production of their works in the most diverse fields of science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Serna-Díaz MG, Mercado-Flores Y, Jiménez-González A, Anducho-Reyes MA, Medina-Marín J, Seck Tuoh-Mora JC, Téllez-Jurado A (2020) Use of barley straw as a support for the production of conidiospores of Trichoderma harzianum. Biotech Report 26:e00445. https://doi.org/10.1016/j.btre.2020.e00445

    Article  Google Scholar 

  2. Yu W, Zou W, Dhital S, Wu P, Gidley MJ, Fox GP, Gilbert RG (2018) The adsorption of α-amylase on barley proteins affects the in vitro digestion of starch in barley flour. Food Chem 241:493–501. https://doi.org/10.1016/j.foodchem.2017.09.021

    Article  PubMed  CAS  Google Scholar 

  3. Sganzerla WG, Zabot GL, Torres-Mayanga PC, Buller LS, Mussatto SI, Forster-Carneiro T (2021) Techno-economic assessment of subcritical water hydrolysis process for sugars production from brewer’s spent grains. Ind Crop Prod 171:113836. https://doi.org/10.1016/j.indcrop.2021.113836

    Article  CAS  Google Scholar 

  4. Barth-HaasGroup (2019) The Barth Report. Joh. Barth & Sohn GmbH & Co KG. https://www.barthhaas.com/fileadmin/user_upload/news/2019-07-23/barthreport20182019en.pdf. Acessed 20 June 2021

  5. Ryan R (2014) Safety of food and beverages: alcoholic beverages. Enc Food Saf. https://doi.org/10.1016/b978-0-12-378612-8.00432-7

    Article  Google Scholar 

  6. Mangang KCS, Das AJ, Deka SC (2016) Shelf Life Improvement of Rice Beer by Incorporation of Albizia myriophylla Extracts. J Food Process Pres 41(4):e12990. https://doi.org/10.1111/jfpp.12990

    Article  CAS  Google Scholar 

  7. Capece A, Romaniello R, Siesto G, Romano P (2018) Conventional and non-conventional yeasts in beer production. Fermentation 4(2):38. https://doi.org/10.3390/fermentation4020038

    Article  CAS  Google Scholar 

  8. Pascari X, Ramos AJ, Marín S, Sanchís V (2018) Mycotoxins and beer. Impact of beer production process on mycotoxin contamination. A review Food Res Int 103:121–129. https://doi.org/10.1016/j.foodres.2017.07.038

    Article  PubMed  CAS  Google Scholar 

  9. Kok YJ, Ye L, Muller J, Ow DSW, Bi X (2019) Brewing with malted barley or raw barley: what makes the difference in the processes? Applied Microbiol Biot 103(3):1059–1067. https://doi.org/10.1007/s00253-018-9537-9

    Article  CAS  Google Scholar 

  10. Ispiryan L, Kuktaite R, Zannini E, Arendt EK (2021) Fundamental study on changes in the FODMAP profile of cereals, pseudo-cereals, and pulses during the malting process. Food Chem 343:128549. https://doi.org/10.1016/j.foodchem.2020.128549

    Article  PubMed  CAS  Google Scholar 

  11. Geißinger C, Whitehead I, Hofer K, Heß M, Habler K, Becker T, Gastl M (2019) Influence of Fusarium avenaceum infections on barley malt: monitoring changes in the albumin fraction of barley during the malting process. Int J Food Microbiol 293:7–16. https://doi.org/10.1016/j.ijfoodmicro.2018.12.026

    Article  PubMed  CAS  Google Scholar 

  12. Almeida FS, Andrade Silva CA, Lima SM, Suarez YR, Cunha Andrade LH (2018) Use of Fourier transform infrared spectroscopy to monitor sugars in the beer mashing process. Food Chem 263:i112-118. https://doi.org/10.1016/j.foodchem.2018.04.109

    Article  CAS  Google Scholar 

  13. Juchen PT, Piffer HH, Veit MT, da Cunha GG, Palácio SM, Zanette JC (2018) Biosorption of reactive blue BF-5G dye by malt bagasse: kinetic and equilibrium studies. J Environ Chem Eng 6(6):7111–7118. https://doi.org/10.1016/j.jece.2018.11.009

    Article  CAS  Google Scholar 

  14. Rojas-Chamorro JA, Romero-García JM, Cara C, Romero I, Castro E (2020) Improved ethanol production from the slurry of pretreated brewers’ spent grain through different co-fermentation strategies. Bioresource Technol 296:122367. https://doi.org/10.1016/j.biortech.2019.122367

    Article  CAS  Google Scholar 

  15. Nocente F, Taddei F, Galassi E, Gazza L (2019) Upcycling of brewers’ spent grain by production of dry pasta with higher nutritional potential. LWT 114:108421. https://doi.org/10.1016/j.lwt.2019.108421

    Article  CAS  Google Scholar 

  16. Saba S, Zara G, Bianco A, Garau M, Bononi M, Deroma M, Budroni M (2019) Comparative analysis of vermicompost quality produced from brewers’ spent grain and cow manure by the red earthworm Eisenia fetida. Bioresource Technol 293:122019. https://doi.org/10.1016/j.biortech.2019.122019

    Article  CAS  Google Scholar 

  17. Buffington J (2014) The economic potential of brewer’s spent grain (BSG) as a biomass feedstock. Adv Chem Eng Sci 4(3):308–318. https://doi.org/10.4236/aces.2014.43034

    Article  CAS  Google Scholar 

  18. Sganzerla WG, Buller LS, Mussatto SI, Forster-Carneiro T (2021) Techno-economic assessment of bioenergy and fertilizer production by anaerobic digestion of brewer’s spent grains in a biorefinery concept. J Clean Prod 297:126600. https://doi.org/10.1016/j.jclepro.2021.126600

    Article  CAS  Google Scholar 

  19. Ministério da Agricultura, Pecuária e Abastecimento (2019) Anuário da Cerveja. https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-vegetal/publicacoes/anuario-da-cerveja-2019. Acessed 20 June 2021

  20. Lynch KM, Steffen EJ, Arendt EK (2016) Brewers’ spent grain: a review with an emphasis on food and health. J I Brewing 122(4):553–568. https://doi.org/10.1002/jib.363

    Article  CAS  Google Scholar 

  21. Cordeiro LG, El-Aouar ÂA, de Araújo CVB (2012) Energetic characterization of malt bagasse by calorimetry and thermal analysis. J Therm Anal Calorim 112(2):713–717. https://doi.org/10.1007/s10973-012-2630-x

    Article  CAS  Google Scholar 

  22. Association of Official Analytical Chemists, AOAC (2000). The Association of Official Analytical Chemists, Gaithersburg, MD, USA.

  23. Cai YZ, Corke H (2000) Production and properties of spray-dried Amaranthus betacyanin pigments. J Food Sci 65(7):1248–1252. https://doi.org/10.1111/j.1365-2621.2000.tb10273.x

    Article  CAS  Google Scholar 

  24. American Society For Testing And Materials (2019) ASTM D5865: Standard Test Method for Gross Calorific Value of Coal and Coke. West Conshohocken

  25. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153(2):375–380. https://doi.org/10.1016/s0021-9258(18)71980-7

    Article  CAS  Google Scholar 

  26. Aued-Pimentel S, Alho J, Vares M, Maria A, Bacetti L (1990) Starch determination in sausages (hot dogs): comparison between the Fehling and Somogyi-Nelson methods and evaluation of methodology for starch extraction. Rev Inst Adolfo Lutz 50:251–256

    Google Scholar 

  27. Association of Official Analytical Chemists, AOAC (1996). Fiber (crude) in animal feed and pet food: Gaithersburg, MD, USA. Methods 978.10–1979

  28. Van Soest PJ (1990) Use of Detergents in the Analysis of Fibrous Feeds. II. A Rapid Method for the Determination of Fiber and Lignin. J AOAC Int 73(4):491–497. https://doi.org/10.1093/jaoac/73.4.491

  29. Van Soest PJ (1967) Development of a comprehensive system of feed analyses and its application to forages. J Anim Sci 26(1):119–128. https://doi.org/10.2527/jas1967.261119x

    Article  Google Scholar 

  30. Van Soest PJ, Wine RH (1968) Determination of lignin and cellulose in acid-detergent fiber with permanganate. J AOAC Int 51(4):780–785. https://doi.org/10.1093/jaoac/51.4.780

    Article  Google Scholar 

  31. Bamforth CW, Thomas D (2009) Beer: tap into the art and science of brewing. Oxford University Press, New York

    Google Scholar 

  32. Kunze W, Hendel O, Versuchs U. Lehranstalt Für Brauerei Abt. Verlag (2019) Technology brewing and malting. Editorial: Berlin Vlb Berlin

  33. Castro LEN, Santos JVF, Fagnani KC, Alves HJ, Colpini LMS (2019) Evaluation of the effect of different treatment methods on sugarcane vinasse remediation. J Environ Sci Heal B 54(9):791–800. https://doi.org/10.1080/03601234.2019.1669981

    Article  CAS  Google Scholar 

  34. Mathias TRS, Alexandre VMF, Cammarota MC, de Mello PPM, Sérvulo EFC (2015) Characterization and determination of brewer’s solid wastes composition. J I Brewing 121(3):400–404. https://doi.org/10.1002/jib.229

    Article  CAS  Google Scholar 

  35. Liñán-Montes A, de la Parra-Arciniega SM, Garza-González MT, García-Reyes RB, Soto-Regalado E, Cerino-Córdova FJ (2013) Characterization and thermal analysis of agave bagasse and malt spent grain. J Therm Anal Calorim 115(1):751–758. https://doi.org/10.1007/s10973-013-3321-y

    Article  CAS  Google Scholar 

  36. Mussatto SI, Dragone G, Roberto IC (2006) Brewers’ spent grain: generation, characteristics and potential applications. J Cereal Sci 43(1):1–14. https://doi.org/10.1016/j.jcs.2005.06.001

    Article  CAS  Google Scholar 

  37. Onofre SB, Bertoldo IC, Abatti D, Refosco D (2018) Physiochemical Characterization of the Brewers’ Spent Grain from a Brewery Located in the Southwestern Region of Paraná - Brazil. Int J Adv Eng Res Sci 5(9):18–21. https://doi.org/10.22161/ijaers.5.9.3

  38. Clerck J (1962) Cours de Brasserie. Université de Louvain, Ottignies-Louvain-la-Neuve

    Google Scholar 

  39. Incropera FP (2007) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  40. Juarez-Enriquez E, Olivas GI, Zamudio-Flores PB, Ortega-Rivas E, Perez-Vega S, Sepulveda DR (2017) Effect of water content on the flowability of hygroscopic powders. J Food Eng 205:12–17. https://doi.org/10.1016/j.jfoodeng.2017.02.024

    Article  CAS  Google Scholar 

  41. Bukhari S, Rohani S (2017) Continuous flow synthesis of zeolite-A from coal fly ash utilizing microwave irradiation with recycled liquid stream. Am J Environ Sci 13(3):233–244. https://doi.org/10.3844/ajessp.2017.233.244

    Article  CAS  Google Scholar 

  42. Zgureva D, Stoyanova V, Shoumkova A, Boycheva S, Avdeev G (2020) Quasi natural approach for crystallization of zeolites from different fly ashes and their application as adsorbent media for malachite green removal from polluted waters. Curr Comput-Aided Drug Des 10(11):1064. https://doi.org/10.3390/cryst10111064

    Article  CAS  Google Scholar 

  43. Baek C, Seo J, Choi M, Cho J, Ahn J, Cho K (2018) Utilization of CFBC fly ash as a binder to produce in-furnace desulfurization sorbent. Sustainability 10(12):4854. https://doi.org/10.3390/su10124854

    Article  Google Scholar 

  44. Zgureva D, Boycheva S, Behunová D, Václavíková M (2020) Smart- and zero-energy utilization of coal ash from thermal power plants in the context of circular economy and related to soil recovery. J Environ Eng 146(8):04020081. https://doi.org/10.1061/(asce)ee.1943-7870.0001752

    Article  CAS  Google Scholar 

  45. Zhang J, Wang Q (2016) Sustainable mechanisms of biochar derived from brewers’ spent grain and sewage sludge for ammonia–nitrogen capture. J Clean Prod 112:3927–3934. https://doi.org/10.1016/j.jclepro.2015.07.096

    Article  CAS  Google Scholar 

  46. Kezerle A, Velić N, Hasenay D, Kovačević D (2018) Lignocellulosic Materials as Dye Adsorbents: adsorption of methylene blue and Congo red on Brewers’ Spent Grain. Croatica Chem Acta 91(1). https://doi.org/10.5562/cca3289

  47. Vanreppelen K, Vanderheyden S, Kuppens T, Schreurs S, Yperman J, Carleer R (2014) Activated carbon from pyrolysis of brewer’s spent grain: production and adsorption properties. Waste Manage Res 32(7):634–645. https://doi.org/10.1177/0734242x14538306

    Article  CAS  Google Scholar 

  48. Zedler Ł, Colom X, Saeb MR, Formela K (2018) Preparation and characterization of natural rubber composites highly filled with brewers’ spent grain/ground tire rubber hybrid reinforcement. Compos Part B-Eng 145:182–188. https://doi.org/10.1016/j.compositesb.2018.03.024

    Article  CAS  Google Scholar 

  49. Mongeau R, Brassard R (1982) Determination of neutral detergent fiber in breakfast cereals: pentose, hemicellulose, cellulose and lignin content. J Food Sci 47(2):550–555. https://doi.org/10.1111/j.1365-2621.1982.tb10121.x

    Article  CAS  Google Scholar 

  50. Ibbett R, Gaddipati S, Davies S, Hill S, Tucker G (2011) The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal–analytical and complementary studies. Bioresource Technol 102(19):9272–9278. https://doi.org/10.1016/j.biortech.2011.06.044

    Article  CAS  Google Scholar 

  51. Olsson A, Salmén L (1997) The effect of lignin structure on the viscoelastic properties of wood. Nord Pulp Pap Res J 12:140–144

    Article  CAS  Google Scholar 

  52. Damodaran S, Parkin KL, Fennema OR (2008) Fennema’s food chemistry. CRC Press, Boca Raton

    Google Scholar 

  53. Husted S, Mikkelsen BF, Jensen J, Nielsen NE (2004) Elemental fingerprint analysis of barley (Hordeum vulgare) using inductively coupled plasma mass spectrometry, isotope-ratio mass spectrometry, and multivariate statistics. Anal Bioanal Chem 378(1):171–182. https://doi.org/10.1007/s00216-003-2219-0

    Article  PubMed  CAS  Google Scholar 

  54. Li X, Sun C, Zhou B, He Y (2015) Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy. Sci Rep-UK 5(1). https://doi.org/10.1038/srep17210

  55. McLellan TM, Aber JD, Martin ME, Melillo JM, Nadelhoffer KJ (1991) Determination of nitrogen, lignin, and cellulose content of decomposing leaf material by near infrared reflectance spectroscopy. Can J Forest Res 21(11):1684–1688. https://doi.org/10.1139/x91-232

    Article  CAS  Google Scholar 

  56. Xiaobo Z, Jiewen Z, Povey MJW, Holmes M, Hanpin M (2010) Variables selection methods in near-infrared spectroscopy. Anal Chim Acta 667(1–2):14–32. https://doi.org/10.1016/j.aca.2010.03.048

    Article  PubMed  CAS  Google Scholar 

  57. ALOthman Z, (2012) A review: fundamental aspects of silicate mesoporous materials. Materials 5(12):2874–2902. https://doi.org/10.3390/ma5122874

    Article  PubMed Central  CAS  Google Scholar 

  58. Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure Appl Chem 54(11):2201–2218. https://doi.org/10.1351/pac198254112201

    Article  Google Scholar 

  59. Cychosz KA, Thommes M (2018) Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 4(4):559–566. https://doi.org/10.1016/j.eng.2018.06.001

    Article  CAS  Google Scholar 

  60. Cychosz KA, Thommes M (2018) Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Eng 4:559–566. https://doi.org/10.1016/j.eng.2018.06.001

Download references

Acknowledgements

The authors would like to thank CAPES for the financial support for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design, execution, writing and reviewing.

Corresponding author

Correspondence to Luiz Eduardo Nochi Castro.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest and no competing financial interests.

Compliance with ethics requirements

This study does not contain any studies with human participants or animals performed by any of the authors.

Ethical approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, L.E.N., Colpini, L.M.S. All-around characterization of brewers’ spent grain. Eur Food Res Technol 247, 3013–3021 (2021). https://doi.org/10.1007/s00217-021-03860-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03860-5

Keywords

Navigation