Skip to main content
Log in

A new population of pequi (Caryocar spp.) developed by Brazilian indigenous people has agro-industrial and nutraceutical advantages

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Physical and chemical properties of 190 fruit samples from 26 matrices of a new population of Caryocar spp. were investigated. Whole fruit, named giant pequi, was composed of 67% shell (exocarp and external mesocarp) and 33% pyrene, and the edible pulp (internal mesocarp) comprised 46% pyrene and 15% total fruit mass. The pulp presented moderate contents of energy (269 kcal/100 g) and lipid (16/100 g), mainly monounsaturated fatty acids (56/100 g lipids); high carotenoid concentration (47 µg/g) and considerable phenolic content (101 mg GAE/100 g). Gallic and p-coumaric acids were the main phenolic compounds identified in the pulp, and the larger classes of volatile compounds were esters and monoterpenes, mostly ethyl hexanoate (44%) and β-cis-ocimene (21%). The giant pequi features higher pyrene and pulp yields, and its edible pulp has a lighter color and lower energy and lipid contents compared to those of common species of pequi, as well as is rich in carotenoids and is a source of polyphenols and volatile compounds. These attributes are highly promising for agro-industrial use, with great potential for nutritional and nutraceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Torres LRO, Santana FC, Shinagawa FB, Mancini-Filho J (2018) Bioactive compounds and functional potential of pequi (Caryocar spp.), a native Brazilian fruit: a review. Grasas Aceites 69:1–16

    Google Scholar 

  2. Nascimento-Silva NRR, Naves MMV (2019) Potential of whole pequi (Caryocar spp.) fruit—pulp, almond, oil and shell—as a medicinal food. J Med Food 22:952–962

    PubMed  CAS  Google Scholar 

  3. Ribeiro DM, Fernandes DC, Alves AM, Naves MMV (2014) Carotenoids are related to the colour and lipid content of the pequi (Caryocar brasiliense Camb.) pulp from the Brazilian Savanna. Food Sci Technol 34:507–512

    Google Scholar 

  4. Kerr WE, Silva FR, Tchucarramae B (2007) Pequi (Caryocar brasiliense Camb.): informações preliminares sobre um pequi sem espinhos no caroço. Rev Bras Frutic 29:169–171

    Google Scholar 

  5. Smith M, Fausto C (2016) Socialidade e diversidade de pequis (Caryocar brasiliense, Caryocaraceae) entre os Kuikuro do alto rio Xingu (Brasil). Bol Mus Para Emílio Goeldi Cienc Hum 11:87–113

    Google Scholar 

  6. Alves AM, Fernandes DC, Sousa AGO, Naves RV, Naves MMV (2014) Características físicas e nutricionais de pequis oriundos dos estados de Tocantins, Goiás e Minas Gerais. Braz J Food Technol 17:198–203

    CAS  Google Scholar 

  7. Cordeiro MWS, Cavallieri ALF, Ferri PH, Naves MMV (2013) Características físicas, composição químico-nutricional e dos óleos essenciais da polpa de Caryocar brasiliense nativo do estado de Mato Grosso. Rev Bras Frutic 35:1127–1139

    Google Scholar 

  8. McGuire RG (1992) Reporting of objective color measurements. HortScience 27:1254–1255

    Google Scholar 

  9. AOAC (2012) Official Methods of Analysis, 19th edn. Association of Official Analytical Chemists, Washington, DC, USA

    Google Scholar 

  10. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  11. Ulbricht TLV, Southgate DAT (1991) Coronary heart disease: seven dietary factors. Lancet 338:985–992

    PubMed  CAS  Google Scholar 

  12. Santos-Silva J, Bessa RJB, Santos-Silva F (2002) Effect of genotype, feeding system and slaughter weight on the quality of light lambs II. Fatty acid composition of meat. Livest Prod Sci 77:187–194

    Google Scholar 

  13. Hassanien MMM, Abdel-Razek AG, Rudzinska M, Siger A, Ratusz K, Przybylski R (2014) Phytochemical contents and oxidative stability of oils from non-traditional sources. Eur J Lipid Sci Technol 116:1563–1571

    CAS  Google Scholar 

  14. Higby WK (1962) A simplified method for determination of some aspects of the carotenoid distribution in natural and carotene fortified orange juice. J Food Sci 27:424–429

    Google Scholar 

  15. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279

    CAS  Google Scholar 

  16. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybidic-phosphotungstic acid reagent. Am J Enol Viticult 16:144–158

    CAS  Google Scholar 

  17. Monteiro SS, Ribeiro SR, Soquetta MB, Pires FJ, Wagner R, Rosa CS (2018) Evaluation of the chemical, sensory and volatile composition of sapota-do-Solimões pulp at different ripening stages. Food Res Int 109:159–167

    PubMed  CAS  Google Scholar 

  18. Moura NF, Chaves LJ, Naves RV (2013) Caracterização física de frutos de pequizeiro (Caryocar brasiliense Camb.) do cerrado. Rev Árvore 37:905–912

    Google Scholar 

  19. Nascimento RSM, Cocozza FDM (2015) Physico-chemical characterization and biometry of fruits of ‘pequi’ in Western Bahia. Rev Bras Eng Agric Ambient 19:791–796

    Google Scholar 

  20. Ramos KMC, Souza VAB (2011) Características físicas e químico-nutricionais de frutos de pequizeiro (Caryocar coriaceum Wittm.) em populações naturais da região meio-norte do Brasil. Rev Bras Frutic 33:500–508

    Google Scholar 

  21. Vera R, Naves RV, Nascimento JL, Chaves LJ, Leandro WM, Souza ERB (2005) Caracterização física de frutos do pequizeiro (Caryocar brasiliense Camb.) no Estado de Goiás. Pesq Agropec Trop 35:71–79

    Google Scholar 

  22. Rodriguez-Amaya DB, Kimura M, Godoy HT, Amaya-Farfan J (2008) Updated Brazilian database on food carotenoids: factors affecting carotenoid composition. J Food Compos Anal 21:445–463

    CAS  Google Scholar 

  23. Corrêa GC, Naves RV, Rocha MR, Chaves LJ, Borges JD (2008) Determinações físicas em frutos e sementes de baru (Dipteryx alata Vog.), cajuzinho (Anacardium othonianum Rizz.) e pequi (Caryocar brasiliense Camb.), visando melhoramento genético. Biosci J 24:42–47

    Google Scholar 

  24. Chisté RC, Mercadante AZ (2012) Identification and quantification, by HPLC-DAD-MS/MS, of carotenoids and phenolic compounds from the Amazonian fruit Caryocar villosum. J Agric Food Chem 60:5884–5892

    PubMed  Google Scholar 

  25. Lima A, Silva AMO, Trindade RA, Torres RP, Mancini-Filho J (2007) Composição química e compostos bioativos presentes na polpa e na amêndoa do pequi (Caryocar brasiliense, Camb.). Rev Bras Frutic 29:695–698

    Google Scholar 

  26. Calder PC (2015) Functional roles of fatty acids and their effects on human health. J Parenter Enteral Nutr 39:18S–32S

    Google Scholar 

  27. Wanders AJ, Alssema M, Koning EJP, Cessie S, Vries JH, Zock PL, Rosendaal FR, Heijer M, Mutsert R (2017) Fatty acid intake and its dietary sources in relation with markers of type 2 diabetes risk: the NEO study. Eur J Clin Nutr 71:245–251

    PubMed  CAS  Google Scholar 

  28. Pereira E, Ferreira MC, Sampaio KA, Grimaldi R, Meirelles AJA, Máximo GJ (2019) Physical properties of Amazonian fats and oils and their blends. Food Chem 278:208–215

    PubMed  CAS  Google Scholar 

  29. Munhoz CL, Guimarães RCA, Sanjinez-Argandoña EJ, Maldonade IR (2018) Lipid nutritional quality of the pulp and kernel of bocaiuva (Acrocomia aculeate (Jacq.) Lodd). Ambiência 14:343–355

    Google Scholar 

  30. Silva MP, Cunha VMB, Sousa SHB, Menezes EGO, Bezerra PN, Farias Neto JT, Rocha Filho GN, Araújo ME, Carvalho Junior RN (2019) Supercritical CO2 extraction of lyophilized Açaí (Euterpe oleracea Mart.) pulp oil from three municipalities in the state of Pará, Brazil. J CO2 Util 31:226–234

    CAS  Google Scholar 

  31. Santos OV, Soares SD, Dias PCS, Duarte SPA, Santos MPL, Nascimento FCA (2020) Chromatographic profile and bioactive compounds found in the composition of pupunha oil (Bactris gasipaes Kunth): implications for human health. Rev Nutr 33:e190146

    Google Scholar 

  32. Hashempour-Baltork F, Torbati M, Azadmard-Damirchi S, Savage GP (2018) Chemical, rheological and nutritional characteristics of sesame and olive oils blended with linseed oil. Adv Pharm Bull 8:107–113

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Pinto RHH, Sena C, Santos OV, Costa WA, Rodrigues AMC, Carvalho Junior RN (2018) Extraction of bacaba (Oenocarpus bacaba) oil with supercritical CO2: global yield isotherms, fatty acid composition, functional quality, oxidative stability, spectroscopic profile and antioxidant activity. Grasas Aceites 69:e246

    Google Scholar 

  34. Symoniuk E, Ratusz K, Ostrowska-Ligęza E, Krygier K (2018) Impact of selected chemical characteristics of cold-pressed oils on their oxidative stability determined using the Rancimat and pressure differential scanning calorimetry method. Food Anal Methods 11:1095–1104

    Google Scholar 

  35. Rosso VV, Mercadante AZ (2007) Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J Agric Food Chem 55:5062–5072

    PubMed  Google Scholar 

  36. Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C (2018) A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Pro Lipid Res 70:62–93

    CAS  Google Scholar 

  37. Eggersdorfer M, Wyss A (2018) Carotenoids in human nutrition and health. Arch Biochem Biophys 652:18–26

    PubMed  CAS  Google Scholar 

  38. Rocha MS, Figueiredo RW, Araújo MAM, Moreira-Araújo RSR (2013) Caracterização físico-química e atividade antioxidante (in vitro) de frutos do Cerrado Piauiense. Rev Bras Frutic 35:933–941

    Google Scholar 

  39. Ferk F, Kundi M, Brath H, Szekeres T, Al-Serori H, Mišík M, Saiko P, Marculescu R, Wagner KH, Knasmueller S (2018) Gallic acid improves health-associated biochemical parameters and prevents oxidative damage of DNA in type 2 diabetes patients: results of a placebo-controlled pilot study. Mol Nutr Food Res 62:1700482

    Google Scholar 

  40. Belo RFC, Augusti R, Lopes PSN, Junqueira RG (2013) Characterization and classification of pequi trees (Caryocar brasiliense Camb.) based on the profile of volatile constituents using headspace solid-phase microextraction—gas chromatography—mass spectrometry and multivariate analysis. Food Sci Technol 33:116–124

    Google Scholar 

  41. Damiani C, Vilas Boas EVB, Ferri PH, Pinto DM, Rodrigues LJ (2009) Volatile compounds profile of fresh-cut peki fruit stored under different temperatures. Food Sci Technol 29:435–439

    Google Scholar 

Download references

Acknowledgements

The authors thank the Fundação de Amparo à Pesquisa (FAPEMAT) and the Instituto Federal de Educação, Ciência e Tecnologia (IFMT) do Estado do Mato Grosso, Brazil, for financial support (scholarship and research funding). They are also grateful to Mr Vilamir José Longo for the authorization and support in the fruit harvest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Margareth Veloso Naves or Madison Willy Silva Cordeiro.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos da Silva, M., Alves-Santos, A.M., dos Santos, I.D. et al. A new population of pequi (Caryocar spp.) developed by Brazilian indigenous people has agro-industrial and nutraceutical advantages. Eur Food Res Technol 246, 1715–1724 (2020). https://doi.org/10.1007/s00217-020-03525-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03525-9

Keywords

Navigation