Skip to main content
Log in

Recent advances in analysis of new psychoactive substances by means of liquid chromatography coupled with low-resolution tandem mass spectrometry

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The number of methods for the analysis of new psychoactive substances (NPS) is continually increasing, and there is no indication that this trend will change in the near future. The constantly growing market of “designer drugs” makes it necessary to develop new methods of their analysis. The aim of this review is to present the multi-component methods of detection and identification of NPS using low-resolution tandem mass spectrometry coupled with liquid chromatography. For this purpose, 36 articles were selected by applying strictly defined search criteria. Due to the large differences in the matrices and physicochemical properties of the analytes, the described research methods are diverse. These differences are visible in sample preparation methods, chromatographic columns, mobile phases, gradients, or additives to mobile phases used. This work collects and organizes the existing information on the subject of NPS screening analysis methods and will be helpful to forensic scientists working on this topic.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

AmAc:

Ammonium acetate

AmFm:

Ammonium formate

DBS:

Dry blood spots

EMCDDA:

European Monitoring Centre for Drugs and Drug Addiction

EWS EU:

European Union Early Warning System

FA:

Formic acid

H2O:

Water

HCl:

Hydrochloric acid

IPA:

Isopropyl alcohol

LC-HRMS:

Liquid chromatography with high-resolution mass spectrometry

LC-MS/MS:

Liquid chromatography with tandem mass spectrometry

LC-QQQ-MS:

Liquid chromatography with triple quadrupole tandem mass spectrometry

LLE:

Liquid-liquid extraction

MeOH:

Methanol

MRM:

Multiple reaction monitoring

MTBE:

Methyl tert-butyl ether

NPS:

New psychoactive substances

PP:

Protein precipitation

QTRAP:

Mass spectrometers with quadrupole and linear ion trap

RP:

Reversed-phase

SLE:

Solid-liquid extraction

SPE:

Solid-phase extraction

SRM:

Selected reaction monitoring

References

  1. Rozporządzenie Ministra Zdrowia z dnia 17 sierpnia 2018 r. w sprawie wykazu substancji psychotropowych, środków odurzających oraz nowych substancji psychoaktywnych. https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20180001591. Accessed 31 May 2023

  2. Europejskie Centrum MonitorowaniaNarkotykówiNarkomanii. Europejski raport narkotykowy 2022: Tendencje i osiągnięcia. Luksemburg: Urząd Publikacji Unii Europejskiej; 2022.

    Google Scholar 

  3. Grafinger KE, Liechti ME, Liakoni E. Clinical value of analytical testing in patients presenting with new psychoactive substances intoxication. Br J Clin Pharmacol. 2020;86(3):429–36.

    Article  PubMed  Google Scholar 

  4. Ellefsen KN, Concheiro M, Huestis MA. Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases. Drug Metab Rev. 2016;48(2):237–65.

    Article  PubMed  CAS  Google Scholar 

  5. Maurer H, Meyer M. High resolution mass spectrometry in toxicology: Current status and future perspectives. Arch Toxicol. 2016;90:2161–72. https://doi.org/10.1007/s00204-016-1764-1.

    Article  PubMed  CAS  Google Scholar 

  6. Pasin D, Cawley A, Bidny S, Fu S. Current applications of high–resolution mass spectrometry for the analysis of new psychoactive substances: a critical review. Anal Bioanal Chem. 2017;409:5821–36. https://doi.org/10.1007/s00216-017-0441-4.

    Article  PubMed  CAS  Google Scholar 

  7. Mannocchi G, Di Trana A, Tini A, Zaami S, Gottardi M, Pichini S, Busardò FP. Development and validation of fast UHPLC–MS/MS screening method for 87 NPS and 32 other drugs of abuse in hair and nails: application to real cases. Anal Bioanal Chem. 2020;412(21):5125–45. https://doi.org/10.1007/s00216-020-02462-6.

    Article  PubMed  CAS  Google Scholar 

  8. Nzekoue FK, Agostini M, Verboni M, Renzoni C, Alfieri L, Barocci S, Ricciutelli M, Caprioli G, Lucarini S. A comprehensive UHPLC–MS/MS screening method for the analysis of 98 New Psychoactive Substances and related compounds in human hair. J Pharm Biomed Anal. 2021;205:114310. https://doi.org/10.1016/j.jpba.2021.114310.

    Article  PubMed  CAS  Google Scholar 

  9. Boumba VA, Di Rago M, Peka M, Drummer OH, Gerostamoulos D. The analysis of 132 novel psychoactive substances in human hair using a single step extraction by tandem LC/MS. Forensic Sci Int. 2017;279:192–202. https://doi.org/10.1016/j.forsciint.2017.08.031.

    Article  PubMed  CAS  Google Scholar 

  10. Strano-Rossi S, Odoardi S, Fisichella M, Anzillotti L, Gottardo R, Tagliaro F. Screening for new psychoactive substances in hair by ultrahigh-performance liquid chromatography–electrospray ionization tandem mass spectrometry. J Chromatogr A. 2014;1372C:145–56. https://doi.org/10.1016/j.chroma.2014.10.106.

    Article  PubMed  CAS  Google Scholar 

  11. Da Cunha KF, Oliveira KD, Huestis MA, Costa JL. Screening of 104 New Psychoactive Substances (NPS) and Other Drugs of Abuse in Oral Fluid by LC–MS–MS. J Anal Toxicol. 2020;44(7):697–707. https://doi.org/10.1093/jat/bkaa089.

    Article  PubMed  CAS  Google Scholar 

  12. Di Rago M, Pantatan S, Hargreaves M, Wong K, Mantinieks D, Kotsos A, Glowacki L, Drummer OH, Gerostamoulos D. High Throughput Detection of 327 Drugs in Blood by LC–MS–MS with Automated Data Processing. J Anal Toxicol. 2021;45(2):154–83. https://doi.org/10.1093/jat/bkaa057.

    Article  PubMed  CAS  Google Scholar 

  13. Dziadosz M, Weller JP, Klintschar M, Teske J. Scheduled multiple reaction monitoring algorithm as a way to analyse new designer drugs combined with synthetic cannabinoids in human serum with liquid chromatography–tandem mass spectrometry. J Chromatogr B, Anal Technol Biomed Life Sci. 2013;929:84–9. https://doi.org/10.1016/j.jchromb.2013.04.017.

    Article  CAS  Google Scholar 

  14. Borg D, Tverdovsky A, Stripp R. A Fast and Comprehensive Analysis of 32 Synthetic Cannabinoids Using Agilent Triple Quadrupole LC–MS–MS. J Anal Toxicol. 2017;41(1):6–16. https://doi.org/10.1093/jat/bkw104.

    Article  PubMed  CAS  Google Scholar 

  15. Tynon M, Homan J, Kacinko S, Ervin A, McMullin M, Logan BK. Rapid and sensitive screening and confirmation of thirty–four aminocarbonyl/carboxamide (NACA) and arylindole synthetic cannabinoid drugs in human whole blood. Drug Test Anal. 2017;9(6):924–34. https://doi.org/10.1002/dta.2096.

    Article  PubMed  CAS  Google Scholar 

  16. Trana AD, Mannocchi G, Pirani F, Maida N, Gottardi M, Pichini S, Busardò FP. A Comprehensive HPLC–MS–MS Screening Method for 77 New Psychoactive Substances, 24 Classic Drugs and 18 Related Metabolites in Blood, Urine and Oral Fluid. J Anal Toxicol. 2020;44(8):769–83. https://doi.org/10.1093/jat/bkaa103.

    Article  PubMed  CAS  Google Scholar 

  17. Ambach L, Hernández Redondo A, König S, Weinmann W. Rapid and simple LC–MS/MS screening of 64 novel psychoactive substances using dried blood spots. Drug Test Anal. 2013;6(4):367–75. https://doi.org/10.1002/dta.1505.

    Article  PubMed  CAS  Google Scholar 

  18. Ambach L, Redondo AH, König S, Angerer V, Schürch S, Weinmann W. Detection and quantification of 56 new psychoactive substances in whole blood and urine by LC–MS/MS. Bioanalysis. 2015;7(9):1119–36. https://doi.org/10.4155/bio.15.48.

    Article  PubMed  CAS  Google Scholar 

  19. Salomone A, Gazzilli G, Di Corcia D, Gerace E, Vincenti M. Determination of cathinones and other stimulant, psychedelic, and dissociative designer drugs in real hair samples. Anal Bioanal Chem. 2015;408(8):2035–42. https://doi.org/10.1007/s00216-015-9247-4.

    Article  PubMed  CAS  Google Scholar 

  20. Fagiola M, Hahn T, Avella J. Screening of Novel Psychoactive Substances in Postmortem Matrices by Liquid Chromatography-Tandem Mass Spectrometry (LC–MS–MS). J Anal Toxicol. 2018;42(8):562–9. https://doi.org/10.1093/jat/bky050.

    Article  PubMed  CAS  Google Scholar 

  21. Niebel A, Krumbiegel F, Hartwig S, Parr MK, Tsokos M. Detection and quantification of synthetic cathinones and selected piperazines in hair by LC–MS/MS. Forensic Sci Med Pathol. 2020;16(1):32–42. https://doi.org/10.1007/s12024-019-00209-z.

    Article  PubMed  CAS  Google Scholar 

  22. Odoardi S, Fisichella M, Romolo FS, Strano-Rossi S. High–throughput screening for new psychoactive substances (NPS) in whole blood by DLLME extraction and UHPLC–MS/MS analysis. J Chromatogr B, Anal Technol Biomed Life Sci. 2015;1000:57–68. https://doi.org/10.1016/j.jchromb.2015.07.007.

    Article  CAS  Google Scholar 

  23. Ambroziak K, Adamowicz P. Simple screening procedure for 72 synthetic cannabinoids in whole blood by liquid chromatography–tandem mass spectrometry. Forensic Toxicol. 2017;36(2):280–90. https://doi.org/10.1007/s11419-017-0401-x.

    Article  CAS  Google Scholar 

  24. Staeheli SN, Veloso VP, Bovens M, Bissig C, Kraemer T, Poetzsch M. Liquid chromatography–tandem mass spectrometry screening method using information–dependent acquisition of enhanced product ion mass spectra for synthetic cannabinoids including metabolites in urine. Drug Test Anal. 2019;11(9):1369–76. https://doi.org/10.1002/dta.2664.

    Article  PubMed  CAS  Google Scholar 

  25. Giorgetti A, Barone R, Pelletti G, Garagnani M, Pascali J, Haschimi B, Auwärter V. Development and validation of a rapid LC–MS/MS method for the detection of 182 novel psychoactive substances in whole blood. Drug Test Anal. 2022;14(2):202–23. https://doi.org/10.1002/dta.3170.

    Article  PubMed  CAS  Google Scholar 

  26. Adamowicz P, Tokarczyk B. Simple and rapid screening procedure for 143 new psychoactive substances by liquid chromatography–tandem mass spectrometry. Drug Test Anal. 2017;8(7):652–67. https://doi.org/10.1002/dta.1815.

    Article  CAS  Google Scholar 

  27. Garneau B, Desharnais B, Laquerre J, Côté C, Taillon MP, Martin PY, Daigneault G, Mireault P, Lajeunesse A. A comprehensive analytical process, from NPS threat identification to systematic screening: Method validation and one–year prevalence study. Forensic Sci Int. 2021;318:110595. https://doi.org/10.1016/j.forsciint.2020.110595.

    Article  PubMed  CAS  Google Scholar 

  28. Tang MH, Ching CK, Lee CY, Lam YH, Mak TW. Simultaneous detection of 93 conventional and emerging drugs of abuse and their metabolites in urine by UHPLC–MS/MS. J Chromatogr B, Anal Technol Biomed Life Sci. 2014;969:272–84. https://doi.org/10.1016/j.jchromb.2014.08.033.

    Article  CAS  Google Scholar 

  29. Wohlfarth A, Weinmann W, Dresen S. LC–MS/MS screening method for designer amphetamines, tryptamines, and piperazines in serum. Anal Bioanal Chem. 2010;396(7):2403–14. https://doi.org/10.1007/s00216-009-3394-4.

    Article  PubMed  CAS  Google Scholar 

  30. Swortwood MJ, Boland DM, DeCaprio AP. Determination of 32 cathinone derivatives and other designer drugs in serum by comprehensive LC–QQQ–MS/MS analysis. Anal Bioanal Chem. 2013;405(4):1383–97. https://doi.org/10.1007/s00216-012-6548-8.

    Article  PubMed  CAS  Google Scholar 

  31. Lehmann S, Kieliba T, Beike J, Thevis M, Mercer–Chalmers–Bender K. Determination of 74 new psychoactive substances in serum using automated in–line solid–phase extraction–liquid chromatography–tandem mass spectrometry. J Chromatogr B, Anal Technol Biomed Life Sci. 2017;1064:124–38. https://doi.org/10.1016/j.jchromb.2017.09.003.

    Article  CAS  Google Scholar 

  32. Ong RS, Kappatos DC, Russell SGG, Poulsen HA, Banister SD, Gerona RR, Glass M, Johnson CS, McCarthy MJ. Simultaneous analysis of 29 synthetic cannabinoids and metabolites, amphetamines, and cannabinoids in human whole blood by liquid chromatography–tandem mass spectrometry – A New Zealand perspective of use in 2018. Drug Test Anal. 2019;12(2):195–214. https://doi.org/10.1002/dta.2697.

    Article  PubMed  CAS  Google Scholar 

  33. Brandeburová P, Bodík I, Horáková I, Žabka D, Castiglioni S, Salgueiro-González N, Zuccato E, Špalková V, Mackuľak T. Wastewater–based epidemiology to assess the occurrence of new psychoactive substances and alcohol consumption in Slovakia. Ecotoxicol Environ Saf. 2020;200:110762. https://doi.org/10.1016/j.ecoenv.2020.110762.

    Article  PubMed  CAS  Google Scholar 

  34. Mulet CT, Tarifa A, DeCaprio AP. Comprehensive analysis of synthetic cannabinoids and metabolites in oral fluid by online solid–phase extraction coupled to liquid chromatography–triple quadrupole–mass spectrometry. Anal Bioanal Chem. 2020;412(28):7937–53. https://doi.org/10.1007/s00216-020-02926-9.

    Article  PubMed  CAS  Google Scholar 

  35. Kimble AN, DeCaprio AP (2019) Systematic analysis of novel psychoactive substances. II. Development of a screening/confirmatory LC–QqQ–MS/MS method for 800+ compounds and metabolites in urine. Forensic Chem, Volume 16. https://doi.org/10.1016/j.forc.2019.100189.

  36. Fan SY, Zang CZ, Shih PH, Ko YC, Hsu YH, Lin MC, Tseng SH, Wang DY. Simultaneous LC–MS/MS screening for multiple phenethylamine–type conventional drugs and new psychoactive substances in urine. Forensic Sci Int. 2021;325:110884. https://doi.org/10.1016/j.forsciint.2021.110884.

    Article  PubMed  CAS  Google Scholar 

  37. Vaiano F, Busardò FP, Palumbo D, Kyriakou C, Fioravanti A, Catalani V, Mari F, Bertol E. A novel screening method for 64 new psychoactive substances and 5 amphetamines in blood by LC–MS/MS and application to real cases. J Pharm Biomed Anal. 2016;129:441–9. https://doi.org/10.1016/j.jpba.2016.07.009.

    Article  PubMed  CAS  Google Scholar 

  38. Adamowicz P, Tokarczyk B. Screening Analysis for Designer Stimulants by LC–MS/MS. Methods Mol Biol (Clifton, NJ). 2019;1872:165–80. https://doi.org/10.1007/978-1-4939-8823-5_16.

    Article  CAS  Google Scholar 

  39. Vaiano F, Bertol E, Mineo M, Pietrosemoli L, Rubicondo J, Supuran CT, Carta F. Development of a New LC–MS/MS Screening Method for Detection of 120 NPS and 43 Drugs in Blood. Separations. 2021;8(11):221. https://doi.org/10.3390/separations8110221.

    Article  CAS  Google Scholar 

  40. Helander A, Beck O, Hägerkvist R, Hultén P. Identification of novel psychoactive drug use in Sweden based on laboratory analysis––initial experiences from the STRIDA project. Scand J Clin Lab Investig. 2013;73(5):400–6. https://doi.org/10.3109/00365513.2013.793817.

    Article  CAS  Google Scholar 

  41. Björnstad K, Beck O, Helander A. A multi–component LC–MS/MS method for detection of ten plant–derived psychoactive substances in urine. J Chromatogr B, Anal Technol Biomed Life Sci. 2009;877(11–12):1162–8. https://doi.org/10.1016/j.jchromb.2009.03.004.

    Article  CAS  Google Scholar 

  42. Fan SY, Zang CZ, Shih PH, Ko YC, Hsu YH, Lin MC, Tseng SH, Wang DY. A LC–MS/MS method for determination of 73 synthetic cathinones and related metabolites in urine. Forensic Sci Int. 2020;315:110429. https://doi.org/10.1016/j.forsciint.2020.110429.

    Article  PubMed  CAS  Google Scholar 

  43. Fels H, Herzog J, Skopp G, Holzer A, Paul LD, Graw M, Musshoff F. Retrospective analysis of new psychoactive substances in blood samples of German drivers suspected of driving under the influence of drugs. Drug Test Anal. 2020;12(10):1470–6. https://doi.org/10.1002/dta.2897.

    Article  PubMed  CAS  Google Scholar 

  44. Buhrman D, Price P, Rudewicz P. Quantitation of SR 27417 in human plasma using electrospray liquid chromatography–tandem mass spectrometry: a study of ion suppression. J Am Mass Spectrom. 1996;7:1099–105.

    Article  CAS  Google Scholar 

  45. Fu I, Woolf EJ, Matuszewski BK. Effect of the sample matrix on the determination of indinavir in human urine by HPLC with turbo ion spray tandem mass spectrometric detection. J Pharm Biomed Anal. 1998;18:347–57.

    Article  PubMed  CAS  Google Scholar 

  46. Hall TG, Smukste I, Bresciano KR, Wang Y, McKearn D, Savage RE. In: Prasain, J (ed.) Tandem mass spectrometry–applications and principles. Rijeka, Croatia: InTech, 2012, chap. 18.

  47. Furey A, Moriarty M, Bane V, Kinsella B, Lehane M. Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta. 2013;115:104–22. https://doi.org/10.1016/j.talanta.2013.03.048.

    Article  PubMed  CAS  Google Scholar 

  48. Jessome LL, Volmer DA. Ion suppression: a major concern in mass spectrometry. LCGC N Am. 2006;24(5):498–510.

    CAS  Google Scholar 

  49. Yaroshenko D, Kartsova L. Matrix effect and methods for its elimination in bioanalytical methods using chromatography–mass spectrometry. J Anal Chem. 2014;69(4):351–8. https://doi.org/10.1134/S1061934814040133.

    Article  CAS  Google Scholar 

  50. Zhou W, Wang PG, Krynitsky AJ, Rader JI. Rapid and simultaneous determination of hexapeptides (Ac–EEMQRR–amide and H 2 N-EEMQRR–amide) in anti–wrinkle cosmetics by hydrophilic interaction liquid chromatography–solid phase extraction preparation and hydrophilic interaction liquid chromatography with tandem mass spectrometry. J Chromatogr A. 2011;1218(44):7956–63. https://doi.org/10.1016/j.chroma.2011.08.091.

    Article  PubMed  CAS  Google Scholar 

  51. Zhou W, Yang S, Wang PG (2017) Matrix effects and application of matrix effect factor. Bioanalysis.9(23). https://doi.org/10.4155/bio-2017-0214.

Download references

Acknowledgements

I would like to give my sincere thanks to Professor Grzegorz Zadora for valuable advices given during the writing of the publication. The authors gratefully acknowledge the support for this work from the Polish National Center for Research and Development, Lider XII (grant number: LIDER/53/0277/L-12/20/NCBR/2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej Feigel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feigel, B., Adamowicz, P. & Wybraniec, S. Recent advances in analysis of new psychoactive substances by means of liquid chromatography coupled with low-resolution tandem mass spectrometry. Anal Bioanal Chem 416, 107–124 (2024). https://doi.org/10.1007/s00216-023-05057-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05057-z

Keywords

Navigation