Skip to main content
Log in

Comprehensive analysis of synthetic cannabinoids and metabolites in oral fluid by online solid-phase extraction coupled to liquid chromatography-triple quadrupole-mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The class of novel psychoactive substances known as synthetic cannabinoids (SC) includes illicit compounds that are sprayed on plant material and smoked or sold as liquids to be vaporized in e-cigarettes. In toxicological analysis of SC, fast analytical methods are needed for the detection and confirmation of parent drugs and metabolites at very low levels. While various analytical methods have been developed for SC in blood and urine, few are available for alternative matrices such as oral fluid (OF). There are numerous advantages to using OF as a sample matrix for SC analysis, including non-invasive collection, lesser risk of adulteration, and presence of both parent drug and metabolites. Here we report a validated online solid-phase extraction (online SPE) method coupled to LC-QqQ-MS for rapid confirmation and quantitation of 72 structurally diverse SC parent drugs and metabolites in OF with 2.5 min of preconcentration time and a total elution time of < 10 min. The use of online SPE for sample pretreatment facilitates rapid and consistent processing and greatly increases sample throughput. The method was fully validated according to relevant guidelines (ANSI/ASB Standard 036). Bias and precision values were within ± 20% for all compounds in human OF matrix. Method detection and quantitation limits ranged from 0.4 to 3.8 ng/mL and from 1.1 to 11.6 ng/mL, respectively. Recovery, matrix effects, process efficiency, carryover, and stability were also within acceptable limits for the majority of compounds. Successful application of the method was demonstrated using blank human OF fortified with SC in addition to a set of authentic OF specimens previously tested by another laboratory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Drug fact sheet: K2 or Spice. https://www.dea.gov/sites/default/files/sites/getsmartaboutdrugs.com/files/publications/DoA_2017Ed_Updated_6.16.17.pdf#page=88 (accessed August 30, 2016).

  2. Ninnemann AL, Lechner WV, Borges A, Lejuez CW. Synthetic cannabinoids to avoid urine drug screens: implications for contingency management and other treatments for drug dependence. Addict Behav. 2016;63:72–3. https://doi.org/10.1016/j.addbeh.2016.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wiley JL, Marusich JA, Huffman JW, Balster RL, Thomas BF. Hijacking of basic research: the case of synthetic cannabinoids. Methods Rep RTI Press. 2011. https://doi.org/10.3768/rtipress.2011.op.0007.1111.

  4. Fattore L, Fratta W. Beyond THC: the new generation of cannabinoid designer drugs. Front Behav Neurosci. 2011;5:60. https://doi.org/10.3389/fnbeh.2011.00060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tai S, Fantegrossi WE. Synthetic cannabinoids: pharmacology, behavioral effects, and abuse potential. Curr Addict Rep. 2014;1(2):129–36. https://doi.org/10.1007/s40429-014-0014-y.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ford BM, Tai S, Fantegrossi WE, Prather PL. Synthetic pot: not your grandfather’s marijuana. Trends Pharmacol Sci. 2017;38(3):257–76. https://doi.org/10.1016/j.tips.2016.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adams AJ, Banister SD, Irizarry L, Trecki J, Schwartz M, Gerona R. “Zombie” outbreak caused by the synthetic cannabinoid AMB-FUBINACA in New York. N Engl J Med. 2017;376(3):235–42. https://doi.org/10.1056/NEJMoa1610300.

    Article  CAS  PubMed  Google Scholar 

  8. Diao X, Huestis MA. Approaches, challenges, and advances in metabolism of new synthetic cannabinoids and identification of optimal urinary marker metabolites. Clin Pharmacol Ther. 2017;101(2):239–53. https://doi.org/10.1002/cpt.534.

    Article  CAS  PubMed  Google Scholar 

  9. Schedules of controlled substances. Title 21 United States Code §812.

  10. Aldlgan AA, Torrance HJ. Bioanalytical methods for the determination of synthetic cannabinoids and metabolites in biological specimens. TrAC Trends Anal Chem. 2016;80:444–57. https://doi.org/10.1016/j.trac.2016.03.025.

    Article  CAS  Google Scholar 

  11. Coulter C, Garnier M, Moore C. Synthetic cannabinoids in oral fluid. J Anal Toxicol. 2011;35(7):424–30. https://doi.org/10.1093/anatox/35.7.424.

    Article  CAS  PubMed  Google Scholar 

  12. Höld KM, Boer D, Zuidema J, Maes RAA. Saliva as an analytical tool in toxicology. Int J Drug Testing. 1999;1(1):1–36 http://www.ncjrs.gov/App/publications/abstract.aspx?ID=179941 (accessed August 30, 2016).

    Google Scholar 

  13. Aps JK, Martens LC. Review: the physiology of saliva and transfer of drugs into saliva. Forensic Sci Int. 2005;150(2–3):119–31. https://doi.org/10.1016/j.forsciint.2004.10.026.

    Article  CAS  PubMed  Google Scholar 

  14. Ambroziak K, Adamowicz P. Simple screening procedure for 72 synthetic cannabinoids in whole blood by liquid chromatography–tandem mass spectrometry. Forensic Toxicol. 2018;36(2):280–90. https://doi.org/10.1007/s11419-017-0401-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sánchez-González J, Odoardi S, Bermejo AM, et al. Development of a micro-solid-phase extraction molecularly imprinted polymer technique for synthetic cannabinoids assessment in urine followed by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2018;1550:8–20. https://doi.org/10.1016/j.chroma.2018.03.049.

    Article  CAS  PubMed  Google Scholar 

  16. Anumol T, Snyder SA. Rapid analysis of trace organic compounds in water by automated online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. Talanta. 2015;132:77–86. https://doi.org/10.1016/j.talanta.2014.08.011.

    Article  CAS  PubMed  Google Scholar 

  17. Fernández Mdel M, Wille SM, Samyn N, Wood M, López-Rivadulla M, De Boeck G. High-throughput analysis of amphetamines in blood and urine with online solid-phase extraction-liquid chromatography-tandem mass spectrometry. J Anal Toxicol. 2009;33(9):578–87. https://doi.org/10.1093/jat/33.9.578.

    Article  PubMed  Google Scholar 

  18. Amaratunga P, Thomas C, Lemberg BL, Lemberg D. Quantitative measurement of XLR11 and UR-144 in oral fluid by LC-MS-MS. J Anal Toxicol. 2014;38(6):315–21. https://doi.org/10.1093/jat/bku040.

    Article  CAS  PubMed  Google Scholar 

  19. Naegele E. Comparison of direct injection and online SPE for quantitation by LC/MS of trace-level herbicides in water. Agilent Technologies, Inc.; Publication 5991-2140EN, 2013.

  20. ANSI/ASB Standard 036, First Edition 2019. Standard practices for method validation in forensic toxicology. AAFS Standards Board. http://www.asbstandardsboard.org/wp-content/uploads/2019/11/036_Std_e1.pdf.

  21. Peters FT, Drummer OH, Musshoff F. Validation of new methods. Forensic Sci Int. 2007;165(2–3):216–24. https://doi.org/10.1016/j.forsciint.2006.05.021.

    Article  CAS  PubMed  Google Scholar 

  22. Matuszewski BK, Constanzer ML, Chavez-Eng C. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal Chem. 2003;75(13):3019–30. https://doi.org/10.1021/ac020361s.

    Article  CAS  PubMed  Google Scholar 

  23. Wille SMR, Coucke W, De Baere T, Peters FT. Update of standard practices for new method validation in forensic toxicology. Curr Pharm Des. 2017;23(36):5442–54. https://doi.org/10.2174/1381612823666170714154444.

    Article  CAS  PubMed  Google Scholar 

  24. Peters AFT, Hartung M, Saar H, Schmitt MHG. Requirements for the validation of analytical methods. Toxichem Krimtech. 2009;76:185–208 https://www.gtfch.org/cms/images/stories/files/Appendix%20B%20GTFCh%2020090601.pdf (accessed September 19, 2018).

    Google Scholar 

  25. Thompson M. AMC technical brief: is my calibration linear? 2005, AMCTB No 3, December. https://www.rsc.org/images/calibration-linear-technical-brief-3_tcm18-214846.pdf (accessed August 25, 2017).

  26. Kruve A, Rebane R, Kipper K, et al. Tutorial review on validation of liquid chromatography–mass spectrometry methods: part II. Anal Chim Acta. 2015;870:8–28. https://doi.org/10.1016/j.aca.2015.02.016.

    Article  CAS  PubMed  Google Scholar 

  27. Stogner JM, Miller BL. A spicy kind of high: a profile of synthetic cannabinoid users. J Subst Use. 2014;19(1–2):199–205. https://doi.org/10.3109/14659891.2013.770571.

    Article  Google Scholar 

  28. Kuklenyik Z, Calafat AM, Barr JR, Pirkle JL. Design of online solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) hyphenated systems for quantitative analysis of small organic compounds in biological matrices. J Sep Sci. 2011;34(24):3606–18. https://doi.org/10.1002/jssc.201100562.

    Article  CAS  PubMed  Google Scholar 

  29. Hess C, Murach J, Krueger L, et al. Simultaneous detection of 93 synthetic cannabinoids by liquid chromatography-tandem mass spectrometry and retrospective application to real forensic samples. Drug Test Anal. 2017;9(5):721–33. https://doi.org/10.1002/dta.2030.

    Article  CAS  PubMed  Google Scholar 

  30. Scheidweiler KB, Huestis MA. Simultaneous quantification of 20 synthetic cannabinoids and 21 metabolites, and semi-quantification of 12 alkyl hydroxy metabolites in human urine by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2014;1327:105–17. https://doi.org/10.1016/j.chroma.2013.12.067.

    Article  CAS  PubMed  Google Scholar 

  31. Malaca S, Busardò FP, Gottardi M, Pichini S, Marchei E. Dilute and shoot ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis of psychoactive drugs in oral fluid. J Pharm Biomed Anal. 2019;170:63–7. https://doi.org/10.1016/j.jpba.2019.02.039.

    Article  CAS  PubMed  Google Scholar 

  32. Williams M, Martin J, Galettis P. A validated method for the detection of synthetic cannabinoids in oral fluid. J Anal Toxicol. 2019;43(1):10–7. https://doi.org/10.1093/jat/bky043.

    Article  CAS  PubMed  Google Scholar 

  33. Kneisel S, Speck M, Moosmann B, Corneillie TM, Butlin NG, Auwärter V. LC/ESI-MS/MS method for quantification of 28 synthetic cannabinoids in neat oral fluid and its application to preliminary studies on their detection windows. Anal Bioanal Chem. 2013;405(14):4691–706. https://doi.org/10.1007/s00216-013-6887-0.

    Article  CAS  PubMed  Google Scholar 

  34. Rocchi R, Simeoni MC, Montesano C, et al. Analysis of new psychoactive substances in oral fluids by means of microextraction by packed sorbent followed by ultra-high-performance liquid chromatography-tandem mass spectrometry. Drug Test Anal. 2018;10(5):865–73. https://doi.org/10.1002/dta.2330.

    Article  CAS  PubMed  Google Scholar 

  35. Blandino V, Wetzel J, Kim J, Haxhi P, Curtis R, Concheiro M. Oral fluid vs. urine analysis to monitor synthetic cannabinoids and classic drugs recent exposure. Curr Pharm Biotechnol. 2017;18(10):796–805. https://doi.org/10.2174/1389201018666171122113934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huppertz LM, Kneisel S, Auwärter V, Kempf J. A comprehensive library-based, automated screening procedure for 46 synthetic cannabinoids in serum employing liquid chromatography-quadrupole ion trap mass spectrometry with high-temperature electrospray ionization. J Mass Spectrom. 2014;49(2):117–27. https://doi.org/10.1002/jms.3328.

    Article  CAS  PubMed  Google Scholar 

  37. Jang M. Simultaneous quantification of 37 synthetic cannabinoid metabolites in human urine by liquid chromatography-tandem mass spectrometry. Forensic Toxicol. 2015;33(2):221–34. https://doi.org/10.1007/s11419-015-0265-x.

    Article  CAS  Google Scholar 

  38. Scheidweiler KB, Jarvis MJ, Huestis MA. Nontargeted SWATH acquisition for identifying 47 synthetic cannabinoid metabolites in human urine by liquid chromatography-high-resolution tandem mass spectrometry. Anal Bioanal Chem. 2015;407(3):883–97. https://doi.org/10.1007/s00216-014-8118-8.

    Article  CAS  PubMed  Google Scholar 

  39. Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 2014;144:12–41. https://doi.org/10.1016/j.drugalcdep.2014.08.005.

    Article  CAS  PubMed  Google Scholar 

  40. Kakehashi H, Shima N, Ishikawa A, et al. Effects of lipophilicity and functional groups of synthetic cannabinoids on their blood concentrations and urinary excretion. Forensic Sci Int. 2020;307:110106. https://doi.org/10.1016/j.forsciint.2019.110106.

    Article  CAS  PubMed  Google Scholar 

  41. Pocurull E, Calull M, Marcé RM, Borrull F. Comparative study of solid-phase extraction of phenolic compounds: influence of the ion pair reagent. Chromatographia. 1994;38(9):579–84. https://doi.org/10.1007/BF02277157.

    Article  CAS  Google Scholar 

  42. Kneisel S, Speck M, Moosmann B, Auwärter V. Stability of 11 prevalent synthetic cannabinoids in authentic neat oral fluid samples: glass versus polypropylene containers at different temperatures. Drug Test Anal. 2013;5(7):602–6. https://doi.org/10.1002/dta.1497.

    Article  CAS  PubMed  Google Scholar 

  43. Hess C, Krueger L, Unger M, Madea B. Freeze-thaw stability and long-term stability of 84 synthetic cannabinoids in serum. Drug Test Anal. 2017;9(10):1506–11. https://doi.org/10.1002/dta.2133.

    Article  CAS  PubMed  Google Scholar 

  44. Fort C, Jourdan T, Jesse K, Curtis B. Stability of synthetic cannabinoids in biological specimens: analysis through liquid chromatography tandem mass spectrometry. J Anal Toxicol. 2017;41(5):360–6. https://doi.org/10.1093/jat/bkx015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Forensic & Analytical Toxicology Facility at FIU for analytical support and Agilent Technologies, Inc. for instrument loans. The authors also acknowledge generous donation of authentic specimens from Immunalysis Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony P. DeCaprio.

Ethics declarations

OF specimens were obtained in deidentified form with no personal identifying information provided. The study was approved by the FIU Institutional Review Board and was performed in accordance with all required ethical standards for human specimen research. This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulet, C.T., Tarifa, A. & DeCaprio, A.P. Comprehensive analysis of synthetic cannabinoids and metabolites in oral fluid by online solid-phase extraction coupled to liquid chromatography-triple quadrupole-mass spectrometry. Anal Bioanal Chem 412, 7937–7953 (2020). https://doi.org/10.1007/s00216-020-02926-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02926-9

Keywords

Navigation