Skip to main content

Advertisement

Log in

Visual and quantitative detection of E. coli O157:H7 by coupling immunomagnetic separation and quantum dot-based paper strip

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Simple and visual quantitative detection of foodborne pathogens can effectively reduce the outbreaks of foodborne diseases. Herein, we developed a simple and sensitive quantum dot (QD)-based paper device for visual and quantitative detection of Escherichia coli (E. coli) O157:H7 based on immunomagnetic separation and nanoparticle dissolution-triggered signal amplification. In this study, E. coli O157:H7 was magnetically separated and labeled with silver nanoparticles (AgNPs), and the AgNP labels can be converted into millions of Ag ions, which subsequently quench the fluorescence of QDs in the paper strip, which along with the readout can be visualized and quantified by the change in length of fluorescent quenched band. Owing to the high capture efficiency and effective signal amplification, as low as 500 cfu mL−1 of E. coli O157:H7 could be easily detected by naked eyes. Furthermore, this novel platform was successfully applied to detect E. coli O157:H7 in spiked milk samples with good accuracy, indicating its potential in the detection of foodborne pathogens in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ripp S, Jegier P, Johnson C, Brigati J, Sayler G. Bacteriophage-amplified bioluminescent sensing of Escherichia coli O157:H7. Anal Bioanal Chem. 2008;391:507–14. https://doi.org/10.1007/s00216-007-1812-z.

    Article  CAS  PubMed  Google Scholar 

  2. Nishikawa K, Matsuoka K, Kita E, Okabe N, Mizuguchi M, Hino K, et al. A therapeutic agent with oriented carbohydrates for treatment of infections by Shiga toxin-producing Escherichia coli O157:H7. Proc Natl Acad Sci. 2002;99(11):7669–74. https://doi.org/10.1073/pnas.112058999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu M, Wang R, Li Y. Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta. 2017;162:511–22. https://doi.org/10.1016/j.talanta.2016.10.050.

    Article  CAS  PubMed  Google Scholar 

  4. Qiao Z, Lei C, Fu Y, Li Y. An antimicrobial peptide-based colorimetric bioassay for rapid and sensitive detection of E. coli O157:H7. RSC Adv. 2017;7(26):15769–75. https://doi.org/10.1039/C6RA28362D.

    Article  CAS  Google Scholar 

  5. Arora P, Sindhu A, Kaur H, Dilbaghi N, Chaudhury A. An overview of transducers as platform for the rapid detection of foodborne pathogens. Appl Microbiol Biotechnol. 2013;97(5):1829–40. https://doi.org/10.1007/s00253-013-4692-5.

    Article  CAS  PubMed  Google Scholar 

  6. Riu J, Giussani B. Electrochemical biosensors for the detection of pathogenic bacteria in food. TrAC-Trends Anal Chem. 2020;126:115863. https://doi.org/10.1016/j.trac.2020.115863.

    Article  CAS  Google Scholar 

  7. Fu K, Zheng Y, Li J, Liu Y, Pang B, Song X, et al. Colorimetric immunoassay for rapid detection of Vibrio parahemolyticus based on Mn2+ mediates the assembly of gold nanoparticles. J Agric Food Chem. 2018;66(36):9516–21. https://doi.org/10.1021/acs.jafc.8b02494.

    Article  CAS  PubMed  Google Scholar 

  8. Yang L, Deng W, Cheng C, Tan Y, Xie Q, Yao S. Fluorescent immunoassay for the detection of pathogenic bacteria at the single-cell level using carbon dots-encapsulated breakable organosilica nanocapsule as labels. ACS Appl Mater Interfaces. 2018;10(4):3441–8. https://doi.org/10.1021/acsami.7b18714.

    Article  CAS  PubMed  Google Scholar 

  9. Wang Z, Cai R, Gao Z, Yuan Y, Yue T. Immunomagnetic separation: an effective pretreatment technology for isolation and enrichment in food microorganisms detection. Compr Rev Food Sci Food Saf. 2020;19(6):3802–24. https://doi.org/10.1111/1541-4337.12656.

    Article  CAS  PubMed  Google Scholar 

  10. Park JY, Park K, Ok G, Chang HJ, Park TJ, Choi SW, et al. Detection of Escherichia coli O157:H7 using automated immunomagnetic separation and enzyme-based colorimetric assay. Sensors. 2020;20(5):1395. https://doi.org/10.3390/s20051395.

    Article  CAS  PubMed Central  Google Scholar 

  11. Liu Y, Zhao C, Song X, Xu K, Wang J, Li J. Colorimetric immunoassay for rapid detection of Vibrio parahaemolyticus. Microchim Acta. 2017;184(12):4785–92. https://doi.org/10.1007/s00604-017-2523-6.

    Article  CAS  Google Scholar 

  12. Mobed A, Baradaran B, Guardia M, Agazadeh M, Hasanzadeh M, Rezaee MA, et al. Advances in detection of fastidious bacteria: from microscopic observation to molecular biosensors. TrAC-Trends Anal Chem. 2019;113:157–71. https://doi.org/10.1016/j.trac.2019.02.012.

    Article  CAS  Google Scholar 

  13. Fu LM, Wang Y-N. Detection methods and applications of microfluidic paper-based analytical devices. TrAC-Trends Anal Chem. 2018;107:196–211. https://doi.org/10.1016/j.trac.2018.08.018.

    Article  CAS  Google Scholar 

  14. Huang JY, Lin HT, Chen TH, Chen CA, Chang HT, Chen CF. Signal amplified gold nanoparticles for cancer diagnosis on paper-based analytical devices. ACS Sens. 2018;3(1):174–82. https://doi.org/10.1021/acssensors.7b00823.

    Article  CAS  PubMed  Google Scholar 

  15. Ozer T, McMahon C, Henry CS. Advances in paper-based analytical devices. Annu Rev Anal Chem. 2020;13(1):85–109. https://doi.org/10.1146/annurev-anchem-061318-114845.

    Article  Google Scholar 

  16. Adkins JA, Boehle K, Friend C, Chamberlain B, Bisha B, Henry CS. Colorimetric and electrochemical bacteria detection using printed paper- and transparency-based analytic devices. Anal Chem. 2017;89(6):3613–21. https://doi.org/10.1021/acs.analchem.6b05009.

    Article  CAS  PubMed  Google Scholar 

  17. Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS. Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal Chem. 2012;84(6):2900–7. https://doi.org/10.1021/ac203466y.

    Article  CAS  PubMed  Google Scholar 

  18. Sun L, Jiang Y, Pan R, Li M, Wang R, Chen S, et al. A novel, simple and low-cost paper-based analytical device for colorimetric detection of Cronobacter spp. Anal Chim Acta. 2018;1036:80–8. https://doi.org/10.1016/j.aca.2018.05.061.

    Article  CAS  PubMed  Google Scholar 

  19. Ilhan H, Guven B, Dogan U, Torul H, Evran S, Çetin D, et al. The coupling of immunomagnetic enrichment of bacteria with paper-based platform. Talanta. 2019;201:245–52. https://doi.org/10.1016/j.talanta.2019.04.017.

    Article  CAS  PubMed  Google Scholar 

  20. Srisa-Art M, Boehle KE, Geiss BJ, Henry CS. Highly sensitive detection of Salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation. Anal Chem. 2018;90(1):1035–43. https://doi.org/10.1021/acs.analchem.7b04628.

    Article  CAS  PubMed  Google Scholar 

  21. Schaumburg F, Carrell CS, Henry CS. Rapid bacteria detection at low concentrations using sequential immunomagnetic separation and paper-based isotachophoresis. Anal Chem. 2019;91(15):9623–30. https://doi.org/10.1021/acs.analchem.9b01002.

    Article  CAS  PubMed  Google Scholar 

  22. Markwalter CF, Kantor AG, Moore CP, Richardson KA, Wright DW. Inorganic complexes and metal-based nanomaterials for infectious disease diagnostics. Chem Rev. 2019;119(2):1456–518. https://doi.org/10.1021/acs.chemrev.8b00136.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao LJ, Yu RJ, Ma W, Han HX, Tian H, Qian RC, et al. Sensitive detection of protein biomarkers using silver nanoparticles enhanced immunofluorescence assay. Theranostics. 2017;7(4):876–83. https://doi.org/10.7150/thno.17575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gibson LE, Wright DW. Sensitive method for biomolecule detection utilizing signal amplification with porphyrin nanoparticles. Anal Chem. 2016;88(11):5928–33. https://doi.org/10.1021/acs.analchem.6b00855.

    Article  CAS  PubMed  Google Scholar 

  25. Tian T, Li J, Song Y, Zhou L, Zhu Z, Yang CJ. Distance-based microfluidic quantitative detection methods for point-of-care testing. Lab Chip. 2016;16(7):1139–51. https://doi.org/10.1039/C5LC01562F.

    Article  CAS  PubMed  Google Scholar 

  26. Alsaeed B, Mansour FR. Distance-based paper microfluidics; principle, technical aspects and applications. Microchem J. 2020;155:104664. https://doi.org/10.1016/j.microc.2020.104664.

    Article  CAS  Google Scholar 

  27. Povedano E, Valverde A, Montiel VR, Pedrero M, Yáñez-Sedeño P, Barderas R, et al. Rapid electrochemical assessment of tumor suppressor gene methylations in raw human serum and tumor cells and tissues using immunomagnetic beads and selective DNA hybridization. Angew Chem Int Ed. 2018;57(27):8194–8. https://doi.org/10.1002/anie.201804339.

    Article  CAS  Google Scholar 

  28. Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem. 1982;86(17):3391–5. https://doi.org/10.1021/j100214a025.

    Article  CAS  Google Scholar 

  29. Szymanski MS, Porter RA. Preparation and quality control of silver nanoparticle-antibody conjugate for use in electrochemical immunoassays. J Immunol Methods. 2013;387(1):262–9. https://doi.org/10.1016/j.jim.2012.11.003.

    Article  CAS  PubMed  Google Scholar 

  30. Lin Z, Lv S, Zhang K, Tang D. Optical transformation of a CdTe quantum dot-based paper sensor for a visual fluorescence immunoassay induced by dissolved silver ions. J Mater Chem B. 2017;5(4):826–33. https://doi.org/10.1039/C6TB03042D.

    Article  CAS  PubMed  Google Scholar 

  31. Yoon SJ, Nam YS, Lee HJ, Lee Y, Lee KB. Colorimetric probe for Ni2+ based on shape transformation of triangular silver nanoprisms upon H2O2 etching. Sensors Actuators B Chem. 2019;300:127045. https://doi.org/10.1016/j.snb.2019.127045.

    Article  CAS  Google Scholar 

  32. Yoo SM, Lee SY. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 2016;34(1):7–25. https://doi.org/10.1016/j.tibtech.2015.09.012.

    Article  CAS  PubMed  Google Scholar 

  33. Välimaa AL, Tilsala-Timisjärvi A, Virtanen E. Rapid detection and identification methods for Listeria monocytogenes in the food chain-a review. Food Control. 2015;55:103–14. https://doi.org/10.1016/j.foodcont.2015.02.037.

    Article  CAS  Google Scholar 

  34. Chen Q, Huang F, Cai G, Wang M, Lin J. An optical biosensor using immunomagnetic separation, urease catalysis and pH indication for rapid and sensitive detection of Listeria monocytogenes. Sensors Actuator B-Chem. 2018;258:447–53. https://doi.org/10.1016/j.snb.2017.11.087.

    Article  CAS  Google Scholar 

  35. Yu J, Su J, Zhang J, Wei X, Guo A. CdTe/CdS quantum dot-labeled fluorescent immunochromatography test strips for rapid detection of Escherichia coli O157:H7. RSC Adv. 2017;7(29):17819–23. https://doi.org/10.1039/c7ra00821j.

    Article  CAS  Google Scholar 

  36. Morales-Narvaez E, Naghdi T, Zor E, Merkoci A. Photo luminescent lateral-flow immunoassay revealed by graphene oxide: highly sensitive paper-based pathogen detection. Anal Chem. 2015;87(16):8573–7. https://doi.org/10.1021/acs.analchem.5b02383.

    Article  CAS  PubMed  Google Scholar 

  37. Hu J, Jiang Y-Z, Tang M, Wu L-L, Xie H-Y, Zhang Z-L, et al. Colorimetric-fluorescent-magnetic nanosphere-based multimodal assay platform for Salmonella detection. Anal Chem. 2019;91(1):1178–84. https://doi.org/10.1021/acs.analchem.8b05154.

    Article  CAS  PubMed  Google Scholar 

  38. Qiao ZH, Lei CY, Fu YC, Li YB. Rapid and sensitive detection of E. coli O157:H7 based on antimicrobial peptide functionalized magnetic nanoparticles and urease-catalyzed signal amplification. Anal Methods. 2017;9:5204–10. https://doi.org/10.1039/C7AY01643C.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ20C200008) and Ningbo civil Public Welfare Technology Application Research Project (Grant No. 202002N3064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyang Lei or Wenge Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1.20 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Z., Cai, Q., Fu, Y. et al. Visual and quantitative detection of E. coli O157:H7 by coupling immunomagnetic separation and quantum dot-based paper strip. Anal Bioanal Chem 413, 4417–4426 (2021). https://doi.org/10.1007/s00216-021-03395-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03395-4

Keywords

Navigation