Skip to main content
Log in

Ratiometric fluorescence for sensitive detection of phosphate species based on mixed lanthanide metal organic framework

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Phosphate (PO43−) plays a major role in aquatic ecosystems and biosystems. Developing a highly sensitive and selective ratiometric fluorescence probe for detection of PO43− is of great significance to the ecological environment and human health. In this work, a novel dual lanthanide metal organic framework was synthesized via hydrothermal reaction based on Tb3+ and Ce3+ as the center metal ions and terephthalic acid as the organic ligand (designated as Tb-Ce-MOFs). The fluorescence of Tb-Ce-MOFs shows emission at 375 nm. In the presence of PO43−, with increased concentration of PO43−, the fluorescence intensity of Tb-Ce-MOFs at 500 nm and 550 nm increased, while the intensity at 375 nm was reduced. Hence, ratiometric fluorescence detecting of PO43− can be achieved by measuring the ratio of fluorescence at 550 nm (FL550) to 375 nm (FL375) in the fluorescent spectra of the Tb-Ce-MOFs. In this sensing approach, the Tb-Ce-MOFs probe exhibits highly sensitive and selective for detection of PO43−. The limit of detection is calculated to be 28 nM and the detection range is 0.1 to 10 μM. In addition, the Tb-Ce-MOFs were used in the detection of PO43− in real samples.

Graphical abstract

We design and synthesize a mixed lanthanide metal organic framework fluorescence probe (Tb-Ce-MOFs) for ratiometric fluorescence for the detection of PO43− based on Tb3+ and Ce3+ as the center metal ions and terephthalic acid as the organic ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu H, Tong C. A specific turn-on fluorescent sensing for ultrasensitive and selective detection of phosphate in environmental samples based on antenna effect-improved FRET by surfactant. ACS Sensors. 2018;3(8):1539–45.

    Article  CAS  PubMed  Google Scholar 

  2. Shaikh A, Berndt T, Kumar R. Regulation of phosphate homeostasis by the phosphatonins and other novel mediators. Pediatr Nephrol. 2008;23(8):1203–10.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ramakrishnam Raju MV, Harris SM, Pierre VC. Design and applications of metal-based molecular receptors and probes for inorganic phosphate. Chem Soc Rev. 2020;49(4):1090–108.

    Article  CAS  PubMed  Google Scholar 

  4. Law al AT, Adeloju SB. Progress and recent advances in phosphate sensors: a review. Talanta. 2013;114:191–203.

    Article  CAS  PubMed  Google Scholar 

  5. Warwick C, Guerreiro A, Soares A. Sensing and analysis of soluble phosphates in environmental samples: a review. Biosens Bioelectron. 2013;41:1–11.

    Article  CAS  PubMed  Google Scholar 

  6. Huang M-X, Lai J-P, Sun H, Wu W-Z. A simple, highly selective and ultra-sensitive “off-on-off” fluorescent chemosensor for successive detection of aluminum ion and phosphate in water samples. Microchem J. 2019;151:104195.

    Article  CAS  Google Scholar 

  7. Forano C, Farhat H, Mousty C. Recent trends in electrochemical detection of phosphate in actual waters. Curr Opin Electrochem. 2018;11:55–61.

    Article  CAS  Google Scholar 

  8. Gattineni J, Baum M. Genetic disorders of phosphate regulation. Pediatr Nephrol. 2012;27(9):1477–87.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang Z, Feng J, Huang P, Li S, Wu F-Y. Ratiometric fluorescent detection of phosphate in human serum with functionalized gold nanoclusters based on chelation-enhanced fluorescence. Sensors Actuators B Chem. 2019;298:126891.

    Article  CAS  Google Scholar 

  10. Li X, Niu X, Liu P, Xu X, Du D, Lin Y. High-performance dual-channel ratiometric colorimetric sensing of phosphate ion based on target-induced differential oxidase-like activity changes of Ce-Zr bimetal-organic frameworks. Sensors Actuators B Chem. 2020;321:128546.

    Article  CAS  Google Scholar 

  11. Zhao Y, Li H, Lopez A, Su H, Liu J. Promotion and inhibition of the oxidase-mimicking activity of nanoceria by phosphate, polyphosphate, and DNA. ChemBioChem. 2020;21(15):2178–86.

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Liu B, Ye K, Ni L, Xu X, Qiu F, et al. Highly sensitive and specific colorimetric detection of phosphate by using Zr (IV) to synergistically suppress the peroxidase-mimicking activity of hydrophilic Fe3O4 nanocubes. Sensors Actuators B Chem. 2019;297:126822.

    Article  CAS  Google Scholar 

  13. Li X, Liu B, Hu Z, Liu P, Ye K, Pan J, et al. Smartphone-assisted off-on photometric determination of phosphate ion based on target-promoted peroxidase-mimetic activity of porous CexZr1-xO2 (x≥0.5) nanocomposites. Environ Res. 2020;189:109921.

    Article  CAS  PubMed  Google Scholar 

  14. Li L, Zou J-Y, You S-Y, Liu Y-W, Cui H-M, Zhang S-W. A dual luminescent chemosensor derived from a europium(III) metal-organic framework for quantitative detection of phosphate anions and acetylacetone in aqueous solution. Dyes Pigments. 2020;173:108004.

    Article  CAS  Google Scholar 

  15. Fan C, Lv X, Tian M, Yu Q, Mao Y, Qiu W, et al. A terbium(III)-functionalized zinc(II)-organic framework for fluorometric determination of phosphate. Microchim Acta. 2020;187(1):84.

    Article  CAS  Google Scholar 

  16. Ma Y, Zhang Y, Li X, Yang P, Yue J-Y, Jiang Y, et al. Linker-eliminated nano metal–organic framework fluorescent probe for highly selective and sensitive phosphate ratiometric detection in water and body fluids. Anal Chem. 2020;92(5):3722–7.

    Article  CAS  PubMed  Google Scholar 

  17. He J, Sun H, Dai J, Wang H, Yu L, Zhou W, et al. In situ growth of nanoflake and nanoflower-like Ni hydrated hydroxide on the surface of Ni foam as a free-standing electrode for high-performance phosphate detection. J Hazard Mater. 2020;392:122313.

    Article  CAS  PubMed  Google Scholar 

  18. Sivasankaran U, Reinke L, Anand SK, Malecka K, Kumar KG, Radecka H, et al. Ultrasensitive electrochemical sensing of phosphate in water mediated by a dipicolylamine-zinc(II) complex. Sensors Actuators B Chem. 2020;321:128474.

    Article  CAS  Google Scholar 

  19. Sun S, Chen Q, Sheth S, Ran G, Song Q. Direct electrochemical sensing of phosphate in aqueous solutions based on phase transition of calcium phosphate. ACS Sensors. 2020;5(2):541–8.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu JM, Shi Y, Zhu XQ, Yang Y, Jiang FH, Sun CJ, et al. Optofluidic marine phosphate detection with enhanced absorption using a Fabry–Pérot resonator. Lab Chip. 2017;17(23):4025–30.

    Article  CAS  PubMed  Google Scholar 

  21. Li N, Liu SG, Dong JX, Fan YZ, Ju YJ, Luo HQ, et al. Using high-energy phosphate as energy-donor and nucleus growth-inhibitor to prepare carbon dots for hydrogen peroxide related biosensing. Sensors Actuators B Chem. 2018;262:780–8.

    Article  CAS  Google Scholar 

  22. Cheng C, Zhang R, Wang J, Zhang Y, Xiong S, Huang Y, et al. Porphyrinic metal–organic framework nanorod-based dual-modal nanoprobe for sensing and bioimaging of phosphate. ACS Appl Mater Interfaces. 2020;12(23):26391–8.

    Article  CAS  PubMed  Google Scholar 

  23. Dai C, Yang C-X, Yan X-P. Ratiometric fluorescent detection of phosphate in aqueous solution based on near infrared fluorescent silver nanoclusters/metal–organic shell composite. Anal Chem. 2015;87(22):11455–9.

    Article  CAS  PubMed  Google Scholar 

  24. Bai J-M, Zhang L, Liang R-P, Qiu J-D. Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing. Chem Eur J. 2013;19(12):3822–6.

    Article  CAS  PubMed  Google Scholar 

  25. Shamsipur M, Chabok A, Molaabasi F, Seyfoori A, Hajipour-Verdom B, Shojaedin-Givi B, et al. Label free phosphate functionalized semiconducting polymer dots for detection of iron(III) and cytochrome c with application to apoptosis imaging. Biosens Bioelectron. 2019;141:111337.

    Article  CAS  PubMed  Google Scholar 

  26. Shamsipur M, Rajabi HR. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion. Mater Sci Eng C. 2014;36:139–45.

    Article  CAS  Google Scholar 

  27. Rajabi HR, Shamsipur M, Khosravi AA, Khani O, Yousefi MH. Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe. Spectrochim Acta A. 2013;107:256–62.

    Article  CAS  Google Scholar 

  28. Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK. Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem Soc Rev. 2017;46(11):3242–85.

    Article  CAS  PubMed  Google Scholar 

  29. Li Z, Liu Q, Lu X, Deng C, Sun N, Yang X. Magnetic metal-organic framework nanocomposites for enrichment and direct detection of environmental pollutants by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Talanta. 2019;194:329–35.

    Article  CAS  PubMed  Google Scholar 

  30. Yang J, Dai Y, Zhu X, Wang Z, Li Y, Zhuang Q, et al. Metal–organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. J Mater Chem A. 2015;3(14):7445–52.

    Article  CAS  Google Scholar 

  31. Cui Y, Chen F, Yin X-B. A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose. Biosens Bioelectron. 2019;135:208–15.

    Article  CAS  PubMed  Google Scholar 

  32. Hao J-N, Yan B. Amino-decorated lanthanide(III) organic extended frameworks for multi-color luminescence and fluorescence sensing. J Mater Chem C. 2014;2(33):6758–64.

    Article  CAS  Google Scholar 

  33. Qu F, Sun C, Lv X, You J. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Microchim Acta. 2018;185(8):359.

    Article  Google Scholar 

  34. Yin H-Q, Yin X-B. Metal–organic frameworks with multiple luminescence emissions: designs and applications. Acc Chem Res. 2020;53(2):485–95.

    Article  CAS  PubMed  Google Scholar 

  35. Dunn JB, Savage PE. Terephthalic acid synthesis in high-temperature liquid water. Ind Eng Chem Res. 2002;41(18):4460–5.

    Article  CAS  Google Scholar 

  36. Chen H, Li Y, Wu H, Sun N, Deng C. Smart hydrophilic modification of magnetic mesoporous silica with zwitterionic L-cysteine for endogenous glycopeptides recognition. ACS Sustain Chem Eng. 2019;7(2):2844–51.

    Article  CAS  Google Scholar 

  37. Wang M, Hu M, Hu B, Guo C, Song Y, Jia Q, et al. Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: electrochemical immunosensor for sensitive detection of carbohydrate antigen 19-9. Biosens Bioelectron. 2019;135:22–9.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu H, Yuan J, Tan X, Zhang W, Fang M, Wang X. Efficient removal of Pb2+ by Tb-MOFs: identifying the adsorption mechanism through experimental and theoretical investigations. Environ Sci Nano. 2019;6(1):261–72.

    Article  CAS  Google Scholar 

  39. Gao Y, Wu J, Wang J, Fan Y, Zhang S, Dai W. A novel multifunctional p-type semiconductor@MOFs nanoporous platform for simultaneous sensing and photodegradation of tetracycline. ACS Appl Mater Interfaces. 2020;12(9):11036–44.

    Article  PubMed  Google Scholar 

  40. Chen G, Guo Z, Zhao W, Gao D, Li C, Ye C, et al. Design of porous/hollow structured ceria by partial thermal decomposition of Ce-MOF and selective etching. ACS Appl Mater Interfaces. 2017;9(45):39594–601.

    Article  CAS  PubMed  Google Scholar 

  41. Rezaei M, Rajabi HR, Rafiee Z. Selective and rapid extraction of piroxicam from water and plasma samples using magnetic imprinted polymeric nanosorbent: synthesis, characterization and application. Colloids Surf A. 2020;586:124253.

    Article  CAS  Google Scholar 

  42. Rajabi HR, Shamsipur M, Zahedi MM, Roushani M. On-line flow injection solid phase extraction using imprinted polymeric nanobeads for the preconcentration and determination of mercury ions. Chem Eng J. 2015;259:330–7.

    Article  CAS  Google Scholar 

  43. Qin G, Wang J, Li L, Yuan F, Zha Q, Bai W, et al. Highly water-stable Cd-MOF/Tb3+ ultrathin fluorescence nanosheets for ultrasensitive and selective detection of Cefixime. Talanta. 2021;221:121421.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang C, Xu Y, Lv C, Zhou X, Wang Y, Xing W, et al. Mimicking π backdonation in Ce-MOFs for solar-driven ammonia synthesis. ACS Appl Mater Interfaces. 2019;11(33):29917–23.

    Article  CAS  PubMed  Google Scholar 

  45. Gao N, Huang J, Wang L, Feng J, Huang P, Wu F. Ratiometric fluorescence detection of phosphate in human serum with a metal-organic frameworks-based nanocomposite and its immobilized agarose hydrogels. Appl Surf Sci. 2018;459:686–92.

    Article  CAS  Google Scholar 

  46. Han L, Liu SG, Yang YZ, Fan YZ, Zhou J, Zhang XY, et al. A lanthanide coordination polymer as a ratiometric fluorescent probe for rapid and visual sensing of phosphate based on the target-triggered competitive effect. J Mater Chem C. 2020;8(37):13063–71.

    Article  CAS  Google Scholar 

  47. Zhao D, Wan X, Song H, Hao L, Su Y, Lv Y. Metal–organic frameworks (MOFs) combined with ZnO quantum dots as a fluorescent sensing platform for phosphate. Sensors Actuators B Chem. 2014;197:50–7.

    Article  CAS  Google Scholar 

  48. Wu Z, Yang H, Pan S, Liu H, Hu X. Fluorescence-scattering dual-signal response of carbon dots@ZIF-90 for phosphate ratiometric detection. ACS Sensors. 2020;5(7):2211–20.

    Article  CAS  PubMed  Google Scholar 

  49. Othman A, Vargo P, Andreescu S. Recyclable adsorbents based on ceria nanostructures on mesoporous silica beads for the removal and recovery of phosphate from eutrophic waters. ACS Appl Nano Mater. 2019;2(11):7008–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We were also grateful for the Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (FDLAP19004).

Funding

This work was financially supported by the Science and Technology Research Project of Education Department of Jiangxi Province (GJJ190615) and the Natural Science Foundation of Jiangxi Province (20171ACB20025 and 20202BAB213018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Li or Shouzhi Pu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, G., Fan, C. et al. Ratiometric fluorescence for sensitive detection of phosphate species based on mixed lanthanide metal organic framework. Anal Bioanal Chem 413, 3281–3290 (2021). https://doi.org/10.1007/s00216-021-03264-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03264-0

Keywords

Navigation