Skip to main content
Log in

A terbium(III)-functionalized zinc(II)-organic framework for fluorometric determination of phosphate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A terbium(III)-functionalized zinc(II)-organic framework (Tb-MOF-Zn) is shown to be a viable fluorescent probe for phosphate. The organic ligands 4,4′,4″-[((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(oxy)]tribenzoic acid (H3L3) contains multiple carboxyl groups that can react with zinc(II) to yield tubular MOF-Zn. The MOF-Zn was further functionalized with Tb(III) to produce a lanthanide composite of type Tb-MOF-Zn which displays strong fluorescence with excitation/emission maxima at 285/544 nm. Fluorescence is quenched by phosphate because of the specific interaction with Tb(III) in Tb-MOF-Zn. The concentration of Tb-MOF-Zn, reaction time and pH value of the solution were optimized. Fluorescence drops linearly in the 0.01 to 200.0 μM phosphate concentration range, and the detection limit is 4.0 nM. The fluorescent probe was also used to prepare a microdot array on a glass slide for visual detection of phosphate under illumination with UV light.

A terbium(III) functionalized zinc(II)-organic framework was synthesized and used as fluorescent probe for determination of phosphate ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cheng WL, Sue JW, Chen WC, Chang JL, Zen JM (2010) Activated nickel platform for electrochemical sensing of phosphate. Anal Chem 82:1157–1161

    Article  CAS  Google Scholar 

  2. Wygladacz K, Qin Y, Wroblewski W, Bakker E (2008) Phosphate-selective fluorescent sensing microspheres based on uranyl salophene ionophores. Anal Chim Acta 614:77–84

    Article  CAS  Google Scholar 

  3. Yang J, Dai Y, Zhu X, Wang Z, Li Y, Zhuang Q, Shi J, Gu J (2015) Metal-organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. J Mater Chem A 3:7445–7452

    Article  CAS  Google Scholar 

  4. Ahmad R, Ahn MS, Hahn YB (2017) ZnO nanorods array based field-effect transistor biosensor for phosphate detection. J Colloid Interface Sci 498:292–297

    Article  CAS  Google Scholar 

  5. Mak WC, Chan C, Barford J, Renneberg R (2003) Biosensor for rapid phosphate monitoring in a sequencing batch reactor (SBR) system. Biosens Bioelectron 19:233–237

    Article  CAS  Google Scholar 

  6. Liu W, Du Z, Qian Y, Li F (2013) A specific colorimetric probe for phosphate detection based on anti-aggregation of gold nanoparticles. Sensors Actuators B Chem 176:927–931

    Article  CAS  Google Scholar 

  7. Zhao HX, Liu LQ, Liu ZD, Wang Y, Zhao XJ, Huang CZ (2011) Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chem Commun 47:2604–2606

    Article  CAS  Google Scholar 

  8. Ganjali MR, Hosseini M, Memari Z, Faridbod F, Norouzi P, Goldooz H, Badiei A (2011) Selective recognition of monohydrogen phosphate by fluorescence enhancement of a new cerium complex. Anal Chim Acta 708:107–110

    Article  CAS  Google Scholar 

  9. Spangler C, Schaeferling M, Wolfbeis OS (2008) Fluorescent probes for microdetermination of inorganic phosphates and biophosphates. Microchim Acta 161:1–39

    Article  CAS  Google Scholar 

  10. Colina M, Gardiner PHE (1999) Simultaneous determination of total nitrogen, phosphorus and Sulphur by means of microwave digestion and ion chromatography. J Chromatogr A 847:285–290

    Article  CAS  Google Scholar 

  11. Cinti S, Talarico D, Palleschi G, Moscone D, Arduini F (2016) Novel reagentless paper-based screen-printed electrochemical sensor to detect phosphate. Anal Chim Acta 919:78–84

    Article  CAS  Google Scholar 

  12. Gilbert L, Jenkins ATA, Browning S, Hart JP (2011) Development of an amperometric, screen-printed, single-enzyme phosphate ion biosensor and its application to the analysis of biomedical and environmental samples. Sensors Actuators B Chem 160:1322–1327

    Article  CAS  Google Scholar 

  13. Feng L, Liu M, Liu H, Fan C, Cai Y, Chen L, Zhao M, Chu S, Wang H (2018) High-throughput and sensitive fluorimetric strategy for microRNAs in blood using wettable microwells array and silver nanoclusters with red fluorescence enhanced by metal organic frameworks. ACS Appl Mater Interfaces 10:23647–23656

    Article  CAS  Google Scholar 

  14. Yang ZC, Wang M, Yong AM, Wong SY, Zhang XH, Tan H, Chang AY, Li X, Wang J (2011) Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem Commun 47:11615–11617

    Article  CAS  Google Scholar 

  15. Beer PD, Gale PA (2001) Anion recognition and sensing: the state of the art and future perspectives. Angew Chem Int Ed 40:486–516

    Article  CAS  Google Scholar 

  16. Khatua S, Choi SH, Lee J, Kim K, Do Y, Churchill DG (2009) Aqueous fluorometric and colorimetric sensing of phosphate ions by a fluorescent dinuclear zinc complex. Inorg Chem 48:2993–2999

    Article  CAS  Google Scholar 

  17. Li J, Zhou W, Ouyang X, Yu H, Yang R, Tan W, Yuan J (2011) Design of a room-temperature phosphorescence-based molecular beacon for highly sensitive detection of nucleic acids in biological fluids. Anal Chem 83:1356–1362

    Article  CAS  Google Scholar 

  18. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374

    Article  CAS  Google Scholar 

  19. Bobbitt NS, Mendonca ML, Howarth AJ, Islamoglu T, Hupp JT, Farha OK, Snurr RQ (2017) Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem Soc Rev 46:3357–3385

    Article  CAS  Google Scholar 

  20. Fan C, Lv X, Liu F, Feng L, Liu M, Cai Y, Liu H, Wang J, Yang Y, Wang H (2018) Silver nanoclusters encapsulated into metal-organic frameworks with enhanced fluorescence and specific ion accumulation toward the microdot array-based fluorimetric analysis of copper in blood. Acs Sensors 3:441–450

    Article  CAS  Google Scholar 

  21. Dou Z, Yu J, Cui Y, Yu Y, Wang Z, Yang D, Qian G (2014) Luminescent metal–organic framework films as highly sensitive and fast-response oxygen sensors. J Am Chem Soc 136:5527–5530

    Article  CAS  Google Scholar 

  22. Xiang Z, Fang C, Leng S, Cao D (2014) An amino group functionalized metal-organic framework as a luminescent probe for highly selective sensing of Fe3+ ions. J Mater Chem A 2:7662–7665

    Article  CAS  Google Scholar 

  23. Wang GY, Song C, Kong DM, Ruan WJ, Chang Z, Li Y (2014) Two luminescent metal-organic frameworks for the sensing of nitroaromatic explosives and DNA strands. J Mater Chem A 2:2213–2220

    Article  CAS  Google Scholar 

  24. Caffrey DF, Gunnlaugsson T (2014) Displacement assay detection by a dimeric lanthanide luminescent ternary Tb(III)-cyclen complex: high selectivity for phosphate and nitrate anions. Dalton Trans 43:17964–17970

    Article  CAS  Google Scholar 

  25. Made AWVD, Made RHVD (1993) ChemInform abstract: a convenient procedure for bromomethylation of aromatic compounds. Selective mono-, Bis-, or Trisbromomethylation. Cheminform 58:1262–1263

    Google Scholar 

  26. Ojida A, Nonaka H, Miyahara Y, Tamaru S, Sada K, Hamachi I (2006) Bis(Dpa-Zn(II)) appended xanthone: excitation ratiometric chemosensor for phosphate anions. Angew Chem Int Ed 45:5518–5521

    Article  CAS  Google Scholar 

  27. Guanfeng J, Gao X, Zheng T, Weihua G, Houting L, Zhiliang L (2018) Postsynthetic metalation metal–organic framework as a fluorescent probe for the ultrasensitive and reversible detection of PO4 3− ions. Inorg Chem 57:10525–10532

    Article  Google Scholar 

  28. Daiguebonne C, Kerbellec N, Guillou O, Bünzli JC, Gumy F, Catala L, Mallah T, Audebrand N, Gérault Y, Bernot K (2008) Structural and luminescent properties of micro- and nanosized particles of lanthanide terephthalate coordination polymers. Inorg Chem 47:3700–3708

    Article  CAS  Google Scholar 

  29. Kerbellec N, Kustaryono D, Haquin V, Etienne M, Daiguebonne C, Guillou O (2009) An unprecedented family of lanthanide-containing coordination polymers with highly tunable emission properties. Inorg Chem 48:2837–2843

    Article  CAS  Google Scholar 

  30. Kim M, Kim H, Byeon SH (2017) Layered yttrium hydroxide l-Y(OH)3 luminescent adsorbent for detection and recovery of phosphate from water over a wide pH range. ACS Appl Mater Interfaces 9:40461–40470

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Wanjiang scholars in Anhui Province, China and the Institute of Health, Centers of Biomedical Research Excellence (NIH, COBRE, Grant number: P20 GM109024). Its contents are solely the responsibility of the authors, and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Wang or Guodong Liu.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chuan Fan and Xiaoxia Lv are equal authors.

Electronic supplementary material

ESM 1

(DOCX 1023 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Lv, X., Tian, M. et al. A terbium(III)-functionalized zinc(II)-organic framework for fluorometric determination of phosphate. Microchim Acta 187, 84 (2020). https://doi.org/10.1007/s00604-019-4066-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4066-5

Keywords

Navigation