Skip to main content
Log in

Ab initio periodic modelling of the vibrational spectra of molecular crystals: the case of uracil

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The structure and vibrational spectra of solid uracil have been simulated in the framework of Density Functional Theory (DFT) using a periodic unit cell model. Structural parameters are reproduced reasonably well by using the dispersion corrected, global hybrid Hartree–Fock/DFT functional B3LYP-D* and an all-electron, Gaussian type, triple zeta basis set with polarisation. The periodic calculation provides the full set of fundamental harmonic vibrational modes, whose nature can be investigated by inspecting the corresponding eigenvectors. Accounting for dispersive interactions indirectly affects the spectra, through the impact on the cell parameters. Marked differences are found between the gas and solid phase spectra, that can be related to either mode coupling or direct alteration of the potential energy via neighbour-neighbour molecular interactions. Anharmonicity needs to be considered for a meaningful comparison with experiments; a single scaling factor provides a significantly improved agreement for most of the frequencies, except for the NH stretchings, which require a larger downscaling. This rescaling strategy yields results of comparable quality with respect to previously reported calculations with a cluster model and a perturbative treatment of anharmonicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Vibrational frequencies computed at non-equilibrium cell parameters are routinely used in quasi-harmonic calculations [60].

References

  1. Sivakova S, Rowan SJ (2005) Nucleobases as supramolecular motifs. Chem Soc Rev 34:9–21

    Article  CAS  Google Scholar 

  2. Szczesniak M, Nowak MJ, Rostkowska H, Szczepaniak K, Person WB, Shugar D (1983) Matrix isolation studies of nucleic acid constituents. 1. Infrared spectra of uracil monomers. J Am Chem Soc 105:5969–5976

    Article  CAS  Google Scholar 

  3. Chin S, Scott I, Szczepaniak K, Person WB (1984) Matrix isolation studies of nucleic acid constituents. 2. Quantitative ab initio prediction of the infrared spectrum of in-plane modes of uracil. J Am Chem Soc 106:3415–3422

    Article  CAS  Google Scholar 

  4. Graindourze M, Smets J, Zeegers-Huyskens T, Maes G (1990) Fourier transform-infrared spectroscopic study of uracil derivatives and their hydrogen bonded complexes with proton donors: part I. Monomer infrared absorptions of uracil and some methylated uracils in argon matrices. J Mol Struct 222:345–364

    Article  CAS  Google Scholar 

  5. Rozenberg M, Shoham G, Reva I, Fausto R (2004) Low temperature Fourier transform infrared spectra and hydrogen bonding in polycrystalline uracil and thymine. Spectrochim Acta Part A 60:2323–2336

    Article  CAS  Google Scholar 

  6. Choi MY, Miller RE (2005) Multiple isomers of uracil–water complexes: infrared spectroscopy in helium nanodroplets. Phys Chem Chem Phys 7:3565–3573

    Article  CAS  Google Scholar 

  7. Singh JS (2008) FTIR and Raman spectra and fundamental frequencies of biomolecule: 5-methyluracil (thymine). J Mol Struct 876:127–133

    Article  CAS  Google Scholar 

  8. Fornaro T, Brucato JR, Pace E, Guidi M Cestelli, Branciamore S, Pucci A (2013) Infrared spectral investigations of UV irradiated nucleobases adsorbed on mineral surfaces. Icarus 226:1068–1085

    Article  CAS  Google Scholar 

  9. Badr Y, Mahmoud MA (2006) Effect of silver nanowires on the surface-enhanced Raman spectra (SERS) of the RNA bases. Spectrochim Acta Part A 63:639–645

    Article  CAS  Google Scholar 

  10. Barone V, Festa G, Grandi A, Rega N, Sanna N (2004) Accurate vibrational spectra of large molecules by density functional computations beyond the harmonic approximation: the case of uracil and 2-thiouracil. Chem Phys Lett 388:279–283

    Article  CAS  Google Scholar 

  11. Puzzarini C, Biczysko M, Barone V (2011) Accurate anharmonic vibrational frequencies for uracil: the performance of composite schemes and hybrid CC/DFT model. J Chem Theory Comput 7:3702–3710

    Article  CAS  Google Scholar 

  12. Barone V, Biczysko M, Bloino J, Borkowska-Panek M, Carnimeo I, Panek P (2012) Toward anharmonic computations of vibrational spectra for large molecular systems. Int J Quantum Chem 112:2185–2200

    Article  CAS  Google Scholar 

  13. Fornaro T, Biczysko M, Monti S, Barone V (2014) Dispersion corrected DFT approaches for anharmonic vibrational frequency calculations: nucleobases and their dimers. Phys Chem Chem Phys 16:10112–10128

    Article  CAS  Google Scholar 

  14. Singh JS (2014) IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-aminouracil. Spectrochim Acta Part A 130:313–328

    Article  CAS  Google Scholar 

  15. Fornaro T, Burini D, Biczysko M, Barone V (2015) Hydrogen-bonding effects on infrared spectra from anharmonic computations: uracilwater complexes and uracil dimers. J Phys Chem A 119:4224–4236

    Article  CAS  Google Scholar 

  16. Fornaro T, Carnimeo I, Biczysko M (2015) Toward feasible and comprehensive computational protocol for simulation of the spectroscopic properties of large molecular systems: the anharmonic infrared spectrum of uracil in the solid state by the reduced dimensionality/hybrid VPT2 approach. J Phys Chem A 119:5313–5326

    Article  CAS  Google Scholar 

  17. Singh JS (2015) FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-methyluracil (thymine). Spectrochim Acta Part A 137:625–640

    Article  CAS  Google Scholar 

  18. Krasnoshchekov SV, Vogt N, Stepanov NF (2015) Ab initio anharmonic analysis of vibrational spectra of uracil using the numerical-analytic implementation of operator van vleck perturbation theory. J Phys Chem A 119:6723–6737

    Article  CAS  Google Scholar 

  19. Fornaro T, Biczysko M, Bloino J, Barone V (2016) Reliable vibrational wavenumbers for C=O and N–H stretchings of isolated and hydrogen-bonded nucleic acid bases. Phys Chem Chem Phys 18:8479–8490

    Article  CAS  Google Scholar 

  20. Kattan D, Palafox M Alcolea, Rathor SK, Rastogi VK, Rastogi VK (2016) A DFT analysis of the molecular structure, vibrational spectra and other molecular properties of 5-nitrouracil and comparison with uracil. J Mol Struct 1106:300–315

    Article  CAS  Google Scholar 

  21. Sun S, Brown A (2017) Effects of hydrogen bonding with \(\text{ H }_2\text{ O }\) on the resonance Raman spectra of uracil and thymine. Comput Theor Chem 1100:70–82

    Article  CAS  Google Scholar 

  22. Wang F, Zhao D, Jiang L, Xu L, Sun H, Liu Y (2017) A comparative study on the experimental and calculated results of mid-infrared and Raman vibrational modes of nucleic acid bases. J Mol Graph Model 74:305–314

    Article  CAS  Google Scholar 

  23. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco Ph, Llunell M, Causà M, Noël Y (2014) CRYSTAL14 user’s manual. Università di Torino, Torino

    Google Scholar 

  24. Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco Ph, Noël Y, Causà M, Rérat M, Kirtman B (2014) CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int J Quantum Chem 114:1287–1317

    Article  CAS  Google Scholar 

  25. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) B3LYP augmented with an empirical dispersion term (B3LYP-D\(^*\)) as applied to molecular crystals. CrystEngComm 10:405–410

    Article  CAS  Google Scholar 

  26. Becke AD (1993) Density functional theochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  28. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  29. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  31. Schafer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  Google Scholar 

  32. Gatti C, Saunders VR, Roetti C (1994) Crystal-field effects on the topological properties of the electron-density in molecular-crystals—the case of urea. J Chem Phys 101:10686–10696

    Article  CAS  Google Scholar 

  33. Peintinger MF, Oliveira DV, Bredow T (2013) Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J Comput Chem 34:451–459

    Article  CAS  Google Scholar 

  34. Monkhorst HJ, Pack JD (1976) Special points for Brillouin–Zone integration. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  35. Doll K (2001) Implementation of analytical Hartree–Fock gradients for periodic systems. Comput Phys Commun 137:74–88

    Article  CAS  Google Scholar 

  36. Doll K, Saunders VR, Harrison NM (2001) Analytical Hartree–Fock gradients for periodic systems. Int J Quantum Chem 82:1–13

    Article  CAS  Google Scholar 

  37. Civalleri B, D’Arco P, Orlando R, Saunders VR, Dovesi R (2001) Hartree–Fock geometry optimization of periodic system with the CRYSTAL code. Chem Phys Lett 348:131–138

    Article  CAS  Google Scholar 

  38. Broyden CG (1970) The convergence of a class of double-rank minimization algorithms 1. General considerations. J Inst Math Appl 6:76–90

    Article  Google Scholar 

  39. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13:317–322

    Article  Google Scholar 

  40. Goldfarb D (1970) A family of variable-metric methods derived by variational means. Math Comput 24:23–26

    Article  Google Scholar 

  41. Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24:647–656

    Article  Google Scholar 

  42. Pascale F, Zicovich-Wilson CM, Liópez Gejo F, Civalleri B, Orlando R, Dovesi R (2004) The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J Comput Chem 25:888

    Article  CAS  Google Scholar 

  43. Zicovich-Wilson CM, Pascale F, Roetti C, Saunders VR, Orlando R, Dovesi R (2004) The calculation of the vibration frequencies of \(\alpha\)-quartz: the effect of Hamiltonian and basis set. J Comput Chem 25:1873

    Article  CAS  Google Scholar 

  44. Zicovich-Wilson CM, Torres FJ, Pascale F, Valenzano L, Orlando R, Dovesi R (2008) Ab initio simulation of the IR spectra of pyrope. Grossular and andradite. J Comput Chem 29:2268

    Article  CAS  Google Scholar 

  45. Lindberg B (1988) A new efficient method for calculation of energy eigenvalues and eigenstates of the onedimensional Schrdinger equation. J Chem Phys 88:3805–3810

    Article  CAS  Google Scholar 

  46. Ugliengo P (1989) ANHARM-a program to solve monodimensional nuclear Schroedinger equation. Unpublished

  47. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree–Fock, Moller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  48. Dall’Olio Sergio, Dovesi Roberto, Resta Raffaele (1997) Spontaneous polarization as a Berry phase of the Hartree–Fock wave function: the case of \(KNbO3\). Phys Rev B 56:10105

    Article  Google Scholar 

  49. Noël Y, Zicovich-Wilson CM, Civalleri B, D’Arco Ph, Dovesi R (2002) Polarization properties of ZnO and BeO: an ab initio study through the Berry phase and Wannier functions approaches. Phys Rev B 65:014111

    Article  Google Scholar 

  50. Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree–Fock/Kohn–Sham method in an atomic orbital basis. I. Theory. J Chem Phys 139:164101

    Article  Google Scholar 

  51. Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R (2013) Ab initio analytical raman intensities for periodic systems through a coupled perturbed Hartree–Fock/Kohn–Sham method in an atomic orbital basis. II. Validation and comparison with experiments. J Chem Phys 139:164102

    Article  Google Scholar 

  52. Prosandeev S, Waghmare U, Levin I, Maslar J (2005) First-order Raman spectra of \(\text{ AB }_{1/2}\)\(\text{ B }_{1/2}\)\(\text{ O }_3\) double perovskites. Phys Rev B 71:214307

    Article  Google Scholar 

  53. Ugliengo P, Viterbo D, Chiari G (1993) MOLDRAW: molecular graphics on a personal computer. Z Kristallogr 207:9–23

    CAS  Google Scholar 

  54. Ugliengo P (2006) MOLDRAW: a program to display and manipulate molecular and crystal structures. http://www.moldraw.unito.it

  55. JMOL 3D engine. http://jmol.sourceforge.net

  56. JMOLedit applet. http://www.theochem.unito.it/crystal_tuto/mssc2013_cd/tutorials/webvib/index.html

  57. Stewart RF, Jensen LH (1967) Redetermination of the crystal structure of uracil. Acta Crystallogr 23:1102–1105

    Article  CAS  Google Scholar 

  58. Jarzembska KN, Kubsik M, Kaminksi R, Wozniak K, Dominiak PM (2012) From a single molecule to molecular crystal architectures: structural and energetic studies of selected uracil derivatives. Cryst Growth Des 12:2508–2524

    Article  CAS  Google Scholar 

  59. Barone V, Cimino P, Stendardo E (2008) Development and validation of the B3LYP/N07D computational model for structural parameter and magnetic tensors of large free radicals. J Chem Theory Comput 4:751–764

    Article  CAS  Google Scholar 

  60. Erba A (2014) On combining temperature and pressure effects on structural properties of crystals with standard ab initio techniques. J Chem Phys 141:124115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MD acknowledges both the Pawsey Supercomputing Centre (Perth) and the Australian National Computational Infrastructure (NCI, Canberra) for the provision of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco De La Pierre.

Additional information

Published as part of the special collection of articles “In Memoriam of Claudio Zicovich”

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 255 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De La Pierre, M., Pouchan, C. Ab initio periodic modelling of the vibrational spectra of molecular crystals: the case of uracil. Theor Chem Acc 137, 25 (2018). https://doi.org/10.1007/s00214-017-2191-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2191-y

Keywords

Navigation