Skip to main content
Log in

Hepatoprotective effects of sericin on aging-induced liver damage in mice

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Aging is a physiological process in which there is a progressive decline of function in multiple organs such as the liver. The development of natural therapies, such as sericin, for delaying age-associated diseases is of major interest in this regard. Twenty-seven mice were divided into three groups of nine, including young control group (8 weeks, received normal saline), aged control group (24 months, received normal saline), and sericin-treated aged mice (24 months, received sericin at dose 100 mg/kg/day) via oral administration for 14 days. The liver enzymes in serum and oxidative stress markers in liver tissue were evaluated using spectrophotometric/ELISA methods. Apoptotic proteins, pro-inflammatory cytokines, COX2, JNK, and P-38 levels were assessed by western blot analysis. β-galactosidase expression was determined by a qRT-PCR method. The findings showed that 100 mg/kg of sericin reduced liver enzymes in aged mice. Antioxidant capacity in treated aged mice showed an improvement in all indexes in the liver tissue. Also, sericin administration declined pro-inflammatory markers to varying degrees in aged-treated mice. Sericin also increased the expression level of Bcl-2 and decreased the expression level of Bax and cleaved caspase-3.In addition, treatment with sericin suppressed protein expression of p-JNK and p-JNK/JNK. Collectively, these findings would infer that sericin administration may have a hepatoprotective effect in aging-induced liver damage in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Fathi E, Farahzadi R (2016) Isolation, culturing, characterization and aging of adipose tissue-derived mesenchymal stem cells: a brief overview. Braz Arch Biol Technol 59

  • López-Otín C et al (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  PubMed  PubMed Central  Google Scholar 

  • Fathi E, et al (2019) Telomere shortening as a hallmark of stem cell senescence. Stem Cell Investig 6

  • Ebrahimi V et al (2020) Epigenetic modifications in gastric cancer: focus on DNA methylation. Gene. 742:144577

    Article  CAS  PubMed  Google Scholar 

  • Farahzadi R et al (2016) L-carnitine effectively induces hTERT gene expression of human adipose tissue-derived mesenchymal stem cells obtained from the aged subjects. Int J Stem Cells 9(1):107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447

    Article  CAS  PubMed  Google Scholar 

  • Farahzadi R, Fathi E, Vietor I (2020) Mesenchymal stem cells could be considered as a candidate for further studies in cell-based therapy of Alzheimer’s disease via targeting the signaling pathways. ACS Chem Neurosci 11(10):1424–1435

    Article  CAS  PubMed  Google Scholar 

  • Fathi E, Sanaat Z, Farahzadi R (2019) Mesenchymal stem cells in acute myeloid leukemia: a focus on mechanisms involved and therapeutic concepts. Blood Research 54(3):165–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M (2013) Longevity and aging. F1000prime Rep 5

  • Mobarak H et al (2017) L-carnitine significantly decreased aging of rat adipose tissue-derived mesenchymal stem cells. Vet Res Commun 41(1):41–47

    Article  PubMed  Google Scholar 

  • Mehdizadeh A et al (2017) Liposome-mediated RNA interference delivery against Erk1 and Erk2 does not equally promote chemosensitivity in human hepatocellular carcinoma cell line HepG2. Artif Cells, Nanomed Biotechnol 45(8):1612–1619

    Article  CAS  Google Scholar 

  • Rui L (2011) Energy metabolism in the liver. Compr Physiol 4(1):177–197

    Google Scholar 

  • Kim H, Kisseleva T, Brenner DA (2015) Aging and liver disease. Curr Opin Gastroenterol 31(3):184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basso A et al (1998) Reduced DNA synthesis in primary cultures of hepatocytes from old mice is restored by thymus grafts. J Gerontol A Biol Sci Med Sci 53(2):B111–B116

    Article  CAS  PubMed  Google Scholar 

  • Wu I-C et al (2014) Oxidative stress and frailty: a closer look at the origin of a human aging phenotype. Aging. Elsevier, pp 3–14

    Chapter  Google Scholar 

  • Jang JY et al (2018) The role of mitochondria in aging. J Clin Investig 128(9):3662–3670

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295(4):C849–C868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy–inflammation–cell death axis in organismal aging. Science 333(6046):1109–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezabakhsh A et al (2017) Effect of hydroxychloroquine on oxidative/nitrosative status and angiogenesis in endothelial cells under high glucose condition. BioImpacts. 7(4):219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feizy N et al (2016) Morphine inhibited the rat neural stem cell proliferation rate by increasing neuro steroid genesis. Neurochem Res 41(6):1410–1419

    Article  CAS  PubMed  Google Scholar 

  • Saliani N, Montazersaheb S, Kouhsari SM (2017) Micromanaging glucose tolerance and diabetes. Adv Pharm Bullet 7(4):547

    Article  CAS  Google Scholar 

  • Bejma J, Ramires P, Ji L (2000) Free radical generation and oxidative stress with ageing and exercise: differential effects in the myocardium and liver. Acta Physiol Scand 169(4):343–351

    Article  CAS  PubMed  Google Scholar 

  • Szabo G, Csak T (2012) Inflammasomes in liver diseases. J Hepatol 57(3):642–654

    Article  CAS  PubMed  Google Scholar 

  • Lasry A, Ben-Neriah Y (2015) Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol 36(4):217–228

    Article  CAS  PubMed  Google Scholar 

  • Di Iorio A et al (2003) Serum IL-1β levels in health and disease: a population-based study. ‘The InCHIANTI study.’ Cytokine. 22(6):198–205

    Article  PubMed  Google Scholar 

  • Wunderlich FT et al (2010) Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab 12(3):237–249

    Article  CAS  PubMed  Google Scholar 

  • Williams LM et al (2008) Rac mediates TNF-induced cytokine production via modulation of NF-κB. Mol Immunol 45(9):2446–2454

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2):807–869

    Article  CAS  PubMed  Google Scholar 

  • Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68(2):320–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwabe RF, Brenner DA (2006) Mechanisms of liver injury. I. TNF-α-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol-Gastrointest Liver Physiol. 290(4):G583–G589

    Article  CAS  PubMed  Google Scholar 

  • Rajawat YS, Hilioti Z, Bossis I (2009) Aging: central role for autophagy and the lysosomal degradative system. Ageing Res Rev 8(3):199–213

    Article  CAS  PubMed  Google Scholar 

  • Carmona-Gutierrez D et al (2016) The crucial impact of lysosomes in aging and longevity. Ageing Res Rev 32:2–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgunova G et al (2015) Senescence-associated β-galactosidase—a biomarker of aging, DNA damage, or cell proliferation restriction? Mosc Univ Biol Sci Bull 70(4):165–167

    Article  Google Scholar 

  • Ding A-J et al (2017) Current perspective in the discovery of anti-aging agents from natural products. Nat Prod Bioprospect 7(5):335–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deori M et al (2016) Antioxidant effect of sericin in brain and peripheral tissues of oxidative stress induced hypercholesterolemic rats. Front Pharmacol 7:319

    Article  PubMed  PubMed Central  Google Scholar 

  • Seyedaghamiri F, et al (2021) Sericin modulates learning and memory behaviors by tuning of antioxidant, inflammatory, and apoptotic markers in the hippocampus of aged mice. Mol Biol Rep 1–12

  • Kunz RI, et al (2016) Silkworm sericin: properties and biomedical applications. BioMed Res Int 2016

  • Barajas-Gamboa JA et al (2016) Sericin applications: a globular silk protein. Ingeniería y Competitividad 18(2):193–206

    Article  CAS  Google Scholar 

  • Bagheri Y, et al (2020) Protective effects of gamma oryzanol on distant organs after kidney ischemia-reperfusion in rats: a focus on liver protection. Human Exp Toxicol 0960327120979014

  • Bagheri Y et al (2021) Comparative study of gavage and intraperitoneal administration of gamma-oryzanol in alleviation/attenuation in a rat animal model of renal ischemia/reperfusion-induced injury. Iran J Basic Med Sci 24(2):175–183

    PubMed  PubMed Central  Google Scholar 

  • Rahimi M, et al (2021) Renoprotective effects of prazosin on ischemia-reperfusion injury in rats. Human Exp Toxicol. 0960327121993224

  • Montazersaheb S et al (2019) Downregulation of TdT expression through splicing modulation by antisense peptide nucleic acid (PNA). Curr Pharm Biotechnol 20(2):168–178

    Article  CAS  PubMed  Google Scholar 

  • Tarhriz V et al (2019) Transient induction of Cdk9 in the early stage of differentiation is critical for myogenesis. J Cell Biochem 120(11):18854–18861

    Article  CAS  PubMed  Google Scholar 

  • Fathi E, Farahzadi R, Valipour B (2021) Alginate/gelatin encapsulation promotes NK cells differentiation potential of bone marrow resident C-kit(+) hematopoietic stem cells. Int J Biol Macromol 177:317–327

    Article  CAS  PubMed  Google Scholar 

  • Tarhriz V et al (2018) CDK9 regulates apoptosis of myoblast cells by modulation of microRNA-1 expression. J Cell Biochem 119(1):547–554

    Article  CAS  PubMed  Google Scholar 

  • Fathi E, et al (2020) L-carnitine extends the telomere length of the cardiac differentiated CD117+-expressing stem cells. Tissue and Cell 101429

  • Fathi E et al (2020) Cardiac differentiation of bone-marrow-resident c-kit+ stem cells by L-carnitine increases through secretion of VEGF, IL6, IGF-1, and TGF-β as clinical agents in cardiac regeneration. J Biosci 45(1):1–11

    Article  Google Scholar 

  • Kato N et al (1998) Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem 62(1):145–147

    Article  CAS  PubMed  Google Scholar 

  • Prasong S (2011) Screening of antioxidant activity of some Samia ricini (Eri) silks: comparison with Bombyx mori. J Biol Sci 11(4):336–339

    Article  CAS  Google Scholar 

  • Yagi K (1998) Simple assay for the level of total lipid peroxides in serum or plasma. Free radical and antioxidant protocols. Springer, pp 101–106

    Chapter  Google Scholar 

  • Armstrong D, Browne R (1994) The analysis of free radicals, lipid peroxides, antioxidant enzymes and compounds related to oxidative stress as applied to the clinical chemistry laboratory. Free radicals in diagnostic medicine. Springer, pp 43–58

    Chapter  Google Scholar 

  • Walter MF et al (2004) Serum levels of thiobarbituric acid reactive substances predict cardiovascular events in patients with stable coronary artery disease: a longitudinal analysis of the PREVENT study. J Am Coll Cardiol 44(10):1996–2002

    Article  CAS  PubMed  Google Scholar 

  • Chlapanidas T et al (2013) Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. Int J Biol Macromol 58:47–56

    Article  CAS  PubMed  Google Scholar 

  • Aramwit P et al (2009) Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng 107(5):556–561

    Article  CAS  PubMed  Google Scholar 

  • Dash R et al (2008) Silk sericin protein of tropical tasar silkworm inhibits UVB-induced apoptosis in human skin keratinocytes. Mol Cell Biochem 311(1–2):111–119

    Article  CAS  PubMed  Google Scholar 

  • Pearson G et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183

    CAS  PubMed  Google Scholar 

  • Sadler KC et al (2004) MAP kinases regulate unfertilized egg apoptosis and fertilization suppresses death via Ca2+ signaling. Mol Reprod Dev 67(3):366–383

    Article  CAS  PubMed  Google Scholar 

  • Tarín JJ, Pérez-Albalá S, Cano A (2001) Cellular and morphological traits of oocytes retrieved from aging mice after exogenous ovarian stimulation. Biol Reprod 65(1):141–150

    Article  PubMed  Google Scholar 

  • Qin H, et al (2020) Safety assessment of water-extract sericin from silkworm (Bombyx mori) cocoons using different model approaches. 2020

  • Kunz RI, et al (2016) Silkworm sericin: properties and biomedical applications. 2016

  • SASAKI M, et al (2000) A resistant protein, sericin improves atropine-induced constipation in rats. 6(4): 280–283

Download references

Funding

The financial sponsorship of this work was provided by the Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (Pazhoohan ID., 65705; ethical code No., IR.TBZMED.VCR.REC.1399.334).

Author information

Authors and Affiliations

Authors

Contributions

BY and S-SE conceptualized and designed the experiment. BY and MJ conducted experiments. BY, AA, JN-N, MZ, and MK contributed new reagents and analyzed data. MS, S-SE, and FE supervised the project. MS, S-SE, and FE wrote, reviewed, and edited the manuscript. All listed authors have read and approved the final manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Soheila Montazersaheb.

Ethics declarations

Ethics approval

This ethical code of this project is IR.TBZMED.VCR.REC.1399.334.

Consent to participate

This is an animal study.

Consent for publication

All authors agree to publish.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, Y., Sadigh-Eteghad, S., Fathi, E. et al. Hepatoprotective effects of sericin on aging-induced liver damage in mice. Naunyn-Schmiedeberg's Arch Pharmacol 394, 2441–2450 (2021). https://doi.org/10.1007/s00210-021-02160-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-021-02160-9

Keywords

Navigation