Skip to main content
Log in

Cardiac differentiation of bone-marrow-resident c-kit+ stem cells by L-carnitine increases through secretion of VEGF, IL6, IGF-1, and TGF-β as clinical agents in cardiac regeneration

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The idea of regenerating lost myocardium via cell-based therapies remains as highly considerable. C-kit+ stem/progenitor cells are represented to be suitable candidates for cardiac regeneration compared to other stem cells. A multitude of cytokines from these cells are known to give such multifunctional properties; however, the associated mechanisms of these factors are yet to be totally understood. The aim of the present study was to investigate the in vitro effect of L-carnitine (LC) on cardiac differentiation of c-kit+ cells using a cytokines secretion assay. For this purpose, bone-marrow-resident-c-kit+ cells were enriched by MACS method, and were differentiated to cardiac cells using cardiomyocyte differentiation medium in the absence (control group) and presence of LC (experimental group). Also, characterization of enriched c-kit+ cells was performed using flow cytometry and immunocytochemistry. In the following, the cells were subjected to real-time PCR and Western blotting assay for gene and protein assessment, respectively. Afterward, culture medium was collected from both control (−LC) and experimental groups (+ LC) for cytokine measurement. It was found that 0.2 mM LC significantly increased the mRNA and protein expression of cardiac markers of Ang-1, Ang-2, C-TnI, VEGF, vWF, and SMA in c-kit+-cardiomyogenic-differentiated cells. Also, the significant presence of IL-6, IGF-1, TGF-β, and VEGF were obvious in the cultured media from the experimental group compared with the control group. It can be concluded that the mentioned in vitro effects of LC on cardiac differentiation of c-kit+ cells could have resulted from the secreted cytokines IL-6, IGF-1, TGF-β, and VEGF.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abarbanell AM, Coffey AC, Fehrenbacher JW, Beckman DJ, Herrmann JL, Weil B and Meldrum DR 2009 Proinflammatory cytokine effects on mesenchymal stem cell therapy for the ischemic heart. Ann. Thorac. Surg. 88 1036–1043

    PubMed  Google Scholar 

  • Abozguia K, Shivu GN, Ahmed I, Phan T and Frenneaux M 2009 The heart metabolism: pathophysiological aspects in ischaemia and heart failure. Curr. Pharm. Des. 15 827–835

    CAS  PubMed  Google Scholar 

  • Afzal MR, Samanta A, Shah ZI, Jeevanantham V, Abdel-Latif A, Zuba-Surma EK and Dawn B 2015 Adult bone marrow cell therapy for ischemic heart disease: evidence and insights from randomized controlled trials. Circ. Res. 117 558–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Maqtari T, Hong KU, Vajravelu BN, Moktar A, Cao P, Moore IV JB and Bolli R 2017 Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells. PLoS One 12 e0174242.

    PubMed  PubMed Central  Google Scholar 

  • Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL and Robbins RC 2004 Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428 668–673

    CAS  PubMed  Google Scholar 

  • Boomsma RA and Geenen DL 2012 Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One 7 e35685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bujak M and Frangogiannis NG 2007 The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovasc. Res. 74 184–195

    CAS  PubMed  Google Scholar 

  • Czarna A, et al. 2017 Single-cell analysis of the fate of c-kit-positive bone marrow cells. NPJ. Regen. Med. 2 27–42

    PubMed  PubMed Central  Google Scholar 

  • Duran JM, et al. 2013 Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ. Res. 113 539–552

    CAS  PubMed  Google Scholar 

  • Ellison GM, et al. 2007 Acute β-adrenergic overload produces myocyte damage through calcium leakage from the ryanodine receptor 2 but spares cardiac stem cells. J. Biol. Chem. 282 11397–11409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farahzadi R, Mesbah-Namin SA, Zarghami N and Fathi E 2016 L-carnitine effectively induces hTERT gene expression of human adipose tissue-derived mesenchymal stem cells obtained from the aged subjects. Int. J. Stem. Cells. 9 107–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fathi E and Farahzadi R 2018 Zinc sulphate mediates the stimulation of cell proliferation of rat adipose tissue-derived mesenchymal stem cells under high intensity of EMF exposure. Biol. Trace. Elem. Res. 184 529–535

    CAS  PubMed  Google Scholar 

  • Fazel S, Cimini M, Chen L, Li Sh, Angoulvant D, Fedak P, Verma S, Weisel R, Keating A and Li R 2006 Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J. Clin. Invest. 116 1865–1877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freed DH, Cunnington RH, Dangerfield AL, Sutton JS and Dixon IM 2005 Emerging evidence for the role of cardiotrophin-1 in cardiac repair in the infarcted heart. Cardiovasc. Res. 65 782–792

    CAS  PubMed  Google Scholar 

  • Hanahan D 1997 Signaling vascular morphogenesis and maintenance. Science. 277 48–50

    CAS  PubMed  Google Scholar 

  • Holmes DI and Zachary IC 2008 Vascular endothelial growth factor regulates stanniocalcin-1 expression via neuropilin-1-dependent regulation of KDR and synergism with fibroblast growth factor-2. Cell. Signal. 20 569–579

    CAS  PubMed  Google Scholar 

  • Honold J, Fischer-Rasokat U, Seeger F, Leistner D, Lotz S, Dimmeler S, Zeiher A and Assmus B 2013 Impact of intracoronary reinfusion of bone marrow-derived mononuclear progenitor cells on cardiopulmonary exercise capacity in patients with chronic postinfarction heart failure. Clin. Res. Cardiol. 102 619–625

    PubMed  Google Scholar 

  • Iliceto S, Scrutinio D, Bruzzi P, D’Ambrosio G, Boni L, Di Biase M, Biasco GG, Hugenholtz P and Rizzon P 1995 Effects of L-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: the L-Carnitine Ecocardiografia Digitalizzata Infarto Miocardico (CEDIM). Trial. J. Am. Coll. Cardiol. 26 380–387

    CAS  PubMed  Google Scholar 

  • Ishigami M, Ishigami M, Masumoto H, Ikuno T, Aoki T, Kawatou M, Minakata K, Ikeda T, Sakata R, Yamashita J and Minatoya K 2018 Human iPS cell-derived cardiac tissue sheets for functional restoration of infarcted porcine hearts. PLoS One 13 e0201650

    PubMed  PubMed Central  Google Scholar 

  • Isner JM and Asahara T 1999 Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J. Clin. Invest. 103 1231–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson R, Mount S, Ye BE, Mayfield A, Chan V, Boodhwani MA, Davies R, Haddad H and Davis D 2017 Isolation of human explant derived cardiac stem cells from cryopreserved heart tissue. PLoS One 12 e0176000

    PubMed  PubMed Central  Google Scholar 

  • Jeevanantham V, Afzal MR, Zuba-Surma EK and Dawn B 2013 Clinical trials of cardiac repair with adult bone marrow-derived cells. Cell. Cardiomyoplasty 1036 179–205

    CAS  Google Scholar 

  • Kubo H, Berretta RM, Jaleel N, Angert D and Houser SR 2009 c‐Kit+ bone marrow stem cells differentiate into functional cardiac myocytes. Clinic. Transl. Sci. 2 26–32

    CAS  Google Scholar 

  • Li N, Wang C, Jia L and Du J 2014 Heart regeneration, stem cells, and cytokines. Regen. Med. Res. 2 1–6

    Google Scholar 

  • Mathison MP, Gersch R, Nasser A, Lilo S, Korman M, Fourman M, Hackett N, Shroyer K, Yang J, Ma YG, Crystal RK and Rosengart T 2012 In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium with vascular endothelial growth factor. J Am Heart Assoc. 1 e005652

    PubMed  PubMed Central  Google Scholar 

  • Matsuda A, et al. 2011 The embryonic heart contains resident C-Kit-positive cardiac stem cells. Circulation 24 doi/abs/https://doi.org/10.1161/circ.124.suppl_21.a15782

  • Matuszczak S, Czapla J, Jarosz-Biej M, Wiśniewska E, Cichoń T, Smolarczyk R, Kobusińska M, Gajda K, Wilczek P, Śliwka J, Zembala M, Zembala M and Szala S 2014 Characteristic of c-Kit+ progenitor cells in explanted human hearts. Clinic. Res. Cardiol. 103 711–718

    CAS  Google Scholar 

  • Mingorance C, Rodríguez-Rodríguez R, Justo ML, de Sotomayor MÁ and Herrera MD 2011 Critical update for the clinical use of L-carnitine analogs in cardiometabolic disorders. Vasc. Health Risk. Manag. 7 169–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto S, Kawaguchi N, Ellison GM, Matsuoka R, Shin’oka T and Kurosawa H 2010 Characterization of long-term cultured c-kit+ cardiac stem cells derived from adult rat hearts. Stem. Cells. Dev. 19 105–116

    CAS  PubMed  Google Scholar 

  • Mohsin S, Siddiqi S, Collins B and Sussman MA 2011 Empowering adult stem cells for myocardial regeneration. Circ. Res. 109 1415–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nussbaum J, et al. 2007 Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 21 1345–1357

    CAS  PubMed  Google Scholar 

  • Ogawa T, Veinot JP, Kuroski de Bold ML, Georgalis T and de Bold AJ 2008 Angiotensin II receptor antagonism reverts the selective cardiac BNP upregulation and secretion observed in myocarditis. Am. J. Physiol. Heart. Circ. Physiol. 294 H2596-H2603

    CAS  PubMed  Google Scholar 

  • Orlic D, et al. 2001 Bone marrow cells regenerate infarcted myocardium. Nature. 410 701–705

    CAS  PubMed  Google Scholar 

  • Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A and Li S 2011 The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials 32 3921–3930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulson DJ, Traxler J, Schmid M, Noonan J and Shug AL 1986 Protection of the ischaemic myocardium by L-propionylcarnitine: effects on the recovery of cardiac output after ischaemia and reperfusion, carnitine transport, and fatty acid oxidation. Cardiovasc. Res. 20 536–541

    CAS  PubMed  Google Scholar 

  • Pauly DF and Pepine CJ 2003 The role of carnitine in myocardial dysfunction. Am. J. Kidney. Dis. 41 S35-S43

    CAS  PubMed  Google Scholar 

  • Rouhi L, Kajbafzadeh AM, Modaresi M, Shariati M and Hamrahi D 2013 Autologous serum enhances cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells in the presence of transforming growth factor-β1 (TGF-β1) in vitro. Cell. Dev. Biol. Anim. 49 287–294

    CAS  Google Scholar 

  • Sack MN, Rader TA, Park S, Bastin J, McCune SA and Kelly DP 1996 Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94 2837–2842

    CAS  PubMed  Google Scholar 

  • Spagnoli LG, Corsi M, Villaschi S, Palmieri G and Maccari F 1982 Myocardial carnitine deficiency in acute myocardial infarction. Lancet. 319 1419–1420

    Google Scholar 

  • Tang P, Ma S, Dong M, Wang J, Chai S, Liu T and Li J 2018 Effect of interleukin-6 on myocardial regeneration in mice after cardiac injury. Biomed. Pharmacother. 106 303–308

    CAS  PubMed  Google Scholar 

  • Toth KG, McKay BR, De Lisio M, Little JP, Tarnopolsky MA and Parise G 2011 IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS One 6 e17392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Traister A 2018 Cardiac regenerative capacity is age-and disease-dependent in childhood heart disease. PloS one 13 e0200342

    PubMed  PubMed Central  Google Scholar 

  • Valipour B, Mohammadi SM, Abedelahi A, Maragheh BFA, Naderali E, Dehnad A and Charoudeh HN 2018 Culture filtrate ether extracted metabolites from Streptomyces levis ABRIINW111 increased apoptosis and reduced proliferation in acute lymphoblastic leukemia. Biomed. Pharmacother. 108 216–223

    CAS  PubMed  Google Scholar 

  • Van Berlo JH, Kanisicak O, Maillet MJ, Vagnozzi R, Karch JJ, Lin SC, Middleton R, Marbán ED and Molkentin J 2014 C-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509 337–341

    PubMed  PubMed Central  Google Scholar 

  • van der Spoel TIJ, et al. 2011 Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc. Res. 91 649–658

    PubMed  Google Scholar 

  • Wencker D, Chandra M, Nguyen KH, Miao W, Garantziotis SM, Factor S, Shirani JC, Armstrong RN and Kitsis R 2003 A mechanistic role for cardiac myocyte apoptosis in heart failure. J. Clin. Investig. 111 1497–1504

    CAS  PubMed  Google Scholar 

  • Ye L, Zhang S, Greder L, Dutton J, A. Keirstead S, Lepley M, Zhang L, Kaufman D and Zhang J 2013 Effective cardiac myocyte differentiation of human induced pluripotent stem cells requires VEGF. PloS one. 8 e53764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Keung W, Samokhvalov V, Wang W and Lopaschuk GD 2010 Role of fatty acid uptake and fatty acid β-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochim. Biophys. Acta Mol. Basis Dis 1801 1–22

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by a research grant from the University of Tabriz, Tabriz, Iran (Grant No. S/813).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ezzatollah Fathi or Raheleh Farahzadi.

Ethics declarations

Ethical consent was approved by an ethics committee at Tabriz University of Medical Sciences, Tabriz, Iran (Ethic Code No: IR.TBZMED.REC.1396.607) in accordance with the guidelines of Helsinki-Ethical Principles.

Additional information

Communicated by BJ RAO

Corresponding editor: BJ Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, E., Farahzadi, R., Vietor, I. et al. Cardiac differentiation of bone-marrow-resident c-kit+ stem cells by L-carnitine increases through secretion of VEGF, IL6, IGF-1, and TGF-β as clinical agents in cardiac regeneration. J Biosci 45, 92 (2020). https://doi.org/10.1007/s12038-020-00063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00063-0

Keywords

Navigation