Skip to main content
Log in

Xanthohumol exerts protective effects in liver alterations associated with aging

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background and aims

Aging is associated with a deregulation of biological systems that lead to an increase in oxidative stress, inflammation, and apoptosis, among other effects. Xanthohumol is the main preylated chalcone present in hops (Humulus lupulus L.) whose antioxidant, anti-inflammatory and chemopreventive properties have been shown in recent years. In the present study, the possible protective effects of xanthohumol on liver alterations associated with aging were evaluated.

Methods

Male young and old senescence-accelerated prone mice (SAMP8), aged 2 and 10 months, respectively, were divided into four groups: non-treated young, non-treated old, old treated with 1 mg/kg/day xanthohumol, and old treated with 5 mg/kg/day xanthohumol. Male senescence-accelerated resistant mice (SAMR1) were used as controls. After 30 days of treatment, animals were sacrificed and livers were collected. mRNA (AIF, BAD, BAX, Bcl-2, eNOS, HO-1, IL-1β, NF-κB2, PCNA, sirtuin 1 and TNF-α) and protein expressions (BAD, BAX, AIF, caspase-3, Blc-2, eNOS, iNOS, TNF-α, IL1β, NF-κB2, and IL10) were measured by RT-PCR and Western blotting, respectively. Mean values were analyzed using ANOVA.

Results

A significant increase in mRNA and protein levels of oxidative stress, pro-inflammatory and proliferative markers, as well as pro-apoptotic parameters was shown in old non-treated SAMP8 mice compared to the young SAMP8 group and SAMR1 mice. In general, age-related oxidative stress, inflammation and apoptosis were significantly decreased (p < 0.05) after XN treatment. In most cases, this effect was dose-dependent.

Conclusions

XN was shown to modulate inflammation, apoptosis, and oxidative stress in aged livers, exerting a protective effect in hepatic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sanz A, Stefanatos RK (2008) The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci 1(1):10–21

    Article  CAS  PubMed  Google Scholar 

  2. Schmucker D (2005) Age-related changes in liver structure and function: implications for disease? Exp Gerontol 40(8–9):650–659

    Article  CAS  PubMed  Google Scholar 

  3. Preedy V (2014) Aging. Chapter 1. Oxidative stress and frailty: a closer look at the origin of a human aging phenotype

  4. Aikata H, Takaishi H, Kawakami Y, Takahashi S, Kitamoto M, Nakanishi T et al (2000) Telomere reduction in human liver tissues with age and chronic inflammation. Exp Cell Res 256(2):578–582

    Article  CAS  PubMed  Google Scholar 

  5. Jaskelioff M, Muller F, Paik J, Thomas E, Jiang S, Adams A, Sahin E, Kost-Alimova M, Protopopov A, Cadiñanos J, Horner J, Maratos-Flier E, DePinho R (2010) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469(7328):102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aravinthan A, Alexander G (2016) Senescence in chronic liver disease: is the future in ageing? J Hepatol 65:825–834

    Article  CAS  PubMed  Google Scholar 

  7. Pinto C, Cestero J, Rodríguez-Galdón B, Macías P (2014) Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus L.), protects rat tissues against oxidative damage after acute ethanol administration. Toxicol Rep 1:726–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vanhoecke B, Derycke L, Van Marck V, Depypere H, De Keukeleire D, Bracke M (2005) Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int J Cancer 117(6):889–895

    Article  CAS  PubMed  Google Scholar 

  9. Zhang B, Chu W, Wei P, Liu Y, Wei T (2015) Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Radical Biol Med 89:486–497

    Article  CAS  Google Scholar 

  10. Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A (2010) Mechanisms of vascular aging: new perspectives. J Gerontol Ser A Biol Sci Med Sci 65(10):1028–1041

    Article  Google Scholar 

  11. Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T et al (1981) A new murine model of accelerated senescence. Mech Ageing Dev 17(2):183–194

    Article  CAS  PubMed  Google Scholar 

  12. Yagi H, Katoh S, Akiguchi I, Takeda T (1988) Age-related deterioration of ability of acquisition in memory and learning in senescence accelerated mouse: SAM-P/8 as an animal model of disturbances in recent memory. Brain Res 474(1):86–93

    Article  CAS  PubMed  Google Scholar 

  13. Tresguerres JA, Kireev R, Forman K, Cuesta S, Tresguerres AF, Vara E (2012) Effect of chronic melatonin administration on several physiological parameters from old wistar rats and SAMP8 mice. Curr Aging Sci 5(3):242–253

    Article  CAS  PubMed  Google Scholar 

  14. Paredes SD, Forman KA, Garcia C, Vara E, Escames G, Tresguerres JA (2014) Protective actions of melatonin and growth hormone on the aged cardiovascular system. Hormone Mol Biol Clin Investig 18(2):79–88

    Article  CAS  Google Scholar 

  15. Puig A, Rancan L, Paredes SD, Carrasco A, Escames G, Vara E et al (2016) Melatonin decreases the expression of inflammation and apoptosis markers in the lung of a senescence-accelerated mice model. Exp Gerontol 75:1–7

    Article  CAS  PubMed  Google Scholar 

  16. Rancan L, Paredes SD, García I, Muñoz P, García C, López de Hontanar G, de la Fuente M, Vara E, Tresguerres JAF (2017) Protective effect of xanthohumol against age-related brain damage. J Nutr Biochem 49:133–140

    Article  CAS  PubMed  Google Scholar 

  17. Montoliu C, Vallés S, Renau-Piqueras J, Guerri C (2002) Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: effect of chronic alcohol consumption. J Neurochem 63(5):1855–1862

    Article  Google Scholar 

  18. Chomcznyski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocynate-phenol-chloroform extraction: twenty something years on. Nat Protoc 1:581–585

    Article  CAS  Google Scholar 

  19. Shmittgen DT, Livak KJ (2001) Analysis of relative gene expression data using real-time quantitive PCR and the 2-∆∆CT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  20. Pasparakis M, Alexopoulou L, Episkopou V, Kollias G (1996) Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med 184(4):1397–1411

    Article  CAS  PubMed  Google Scholar 

  21. Lee IS, Lim J, Gal J, Kang JC, Kim HJ, Kang BY et al (2011) Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem Int 58(2):153–160

    Article  CAS  PubMed  Google Scholar 

  22. Gieling R, Wallace K, Han Y (2009) Interleukin-1 participates in the progression from liver injury to fibrosis. Am J Physiol Gastrointest Liver Physiol 296(6):G1324-G1331

    Article  CAS  PubMed Central  Google Scholar 

  23. Tak P, Firestein G (2001) NF-κB: a key role in inflammatory diseases. J Clin Investig 107(1):7–11

    Article  CAS  Google Scholar 

  24. Peluso I, Raguzzini A, Serafini M (2013) Effect of flavonoids on circulating levels of TNF-alpha and IL-6 in humans: a systematic review and meta-analysis. Mol Nutr Food Res 57(5):784–801

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Lafuente A, Guillamon E, Villares A, Rostagno MA, Martinez JA (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 58(9):537–552

    Article  CAS  PubMed  Google Scholar 

  26. Paredes SD, Rancan L, Kireev R, González A, Louzao P, González P, Rodríguez-Bobada C, García C, Vara E, Tresguerres J (2015) Melatonin counteracts at a transcriptional level the inflammatory and apoptotic response secondary to ischemic brain injury induced by middle cerebral artery blockade in aging rats. BioRes Open Access 4(1):407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meador BM, Krzyszton CP, Johnson RW, Huey KA (2008) Effects of IL-10 and age on IL-6, IL-1beta, and TNF-alpha responses in mouse skeletal and cardiac muscle to an acute inflammatory insult. J Appl Physiol 104(4):991–997

    Article  CAS  PubMed  Google Scholar 

  28. Lu B, Chen H, Lu HG (2012) The relationship between apoptosis and aging. Adv Biosci Biotechnol 3:705–711

    Article  CAS  Google Scholar 

  29. Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N et al (2000) Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 476(3):118–123

    Article  CAS  PubMed  Google Scholar 

  30. Cau SB, Carneiro FS, Tostes RC (2012) Differential modulation of nitric oxide synthases in aging: therapeutic opportunities. Front Physiol 3:218

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schipper HM (2000) Heme oxygenase-1: role in brain aging and neurodegeneration. Exp Gerontol 35(6–7):821–830

    Article  CAS  PubMed  Google Scholar 

  32. Kelman Z (1997) PCNA: structure, functions and interactions. Oncogene 14(6):629–640

    Article  CAS  PubMed  Google Scholar 

  33. Guarente L (2007) Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol:483–488

Download references

Acknowledgements

The authors would like to thank Medicine students Paula Corral, Bryan Hyacinthe, and Mario Calvo-Soto (School of Medicine, Complutense University of Madrid, Spain) for their continued interest and cooperation in our work. The skillful technical assistance of Rocío Campón (Dept. of Physiology, School of Medicine, Complutense University of Madrid, Spain) is also gratefully acknowledged.

Funding

This study was supported by Grants from Red de Fragilidad y Envejecimiento RETICEF (RD12/0043/0032) and GRUPOS UCM-BSCH (GR35/10-A).

Author information

Authors and Affiliations

Authors

Contributions

EV, JAFT designed the research; CFG, LR, SDP, CM conducted the research; EV, MF analyzed the data; CFG, LR, SDP, EV wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lisa Rancan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Elena Vara and Jesús A. F. Tresguerres share senior authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-García, C., Rancan, L., Paredes, S.D. et al. Xanthohumol exerts protective effects in liver alterations associated with aging. Eur J Nutr 58, 653–663 (2019). https://doi.org/10.1007/s00394-018-1657-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1657-6

Keywords

Navigation