Skip to main content

Advertisement

Log in

Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Ingestion of aristolochic acids (AAs) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adducts formation, is well documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. To better elucidate some aspects of this process, we studied cell cycle distribution and cell survival of renal epithelial cells treated with AAI at low and high doses. A low dose of AA induces cell cycle arrest in G2/M phase via activation of DNA damage checkpoint pathway ATM–Chk2–p53–p21. DNA damage signaling pathway is activated more likely via increased production of reactive oxygen species (ROS) caused by AA treatment then via DNA damage induced directly by AA. Higher AA concentration induced cell death partly via apoptosis. Since mitogen-activated protein kinases play an important role in cell survival, death and cell cycle progression, we assayed their function in AA-treated renal tubular epithelial cells. ERK1/2 and p38 but not JNK were activated in cells treated with AA. In addition, pharmacological inhibition of ERK1/2 and p38 as well as suppression of ROS generation with N-acetyl-l-cysteine resulted in the partial relief of cells from G2/M checkpoint and a decline of apoptosis level. Cell cycle arrest may be a mechanism for DNA repair, cell survival and reprogramming of epithelial cells to the fibroblast type. An apoptosis of renal epithelial cells at higher AA dose might be necessary to provide space for newly reprogrammed fibrotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambrosino C, Nebreda AR (2001) Cell cycle regulation by p38 MAP kinases. Biol Cell 93(1–2):47–51

    Article  CAS  PubMed  Google Scholar 

  • Andorfer P, Schwarzmayr L, Rotheneder H (2011) EAPP modulates the activity of p21 and Chk2. Cell Cycle 10(13):2077–2082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arlt VM, Pfohl-Leszkowicz A, Cosyns J, Schmeiser HH (2001) Analyses of DNA adducts formed by ochratoxin A and aristolochic acid in patients with Chinese herbs nephropathy. Mutat Res 494(1–2):143–150

    Article  CAS  PubMed  Google Scholar 

  • Attaluri S, Bonala RR, Yang IY, Lukin MA, Wen Y, Grollman AP, Moriya M, Iden CR, Johnson F (2010) DNA adducts of aristolochic acid II: total synthesis and site-specific mutagenesis studies in mammalian cells. Nucleic Acids Res 38(1):339–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bieler CA, Stiborova M, Wiessler M, Cosyns JP, Ypersele van de Strihou C, Schmeiser HH (1997) 32P-post-labelling analysis of DNA adducts formed by aristolochic acid in tissues from patients with Chinese herbs nephropathy. Carcinogenesis 18(5):1063–1067

    Article  CAS  PubMed  Google Scholar 

  • Chambard JC, Lefloch R, Pouyssegur J, Lenormand P (2007) ERK implication in cell cycle regulation. Biochim Biophys Acta 1773(8):1299–1310

    Article  CAS  PubMed  Google Scholar 

  • Chang HR, Lian JD, Lo CW, Chang YC, Yang MY, Wang CJ (2006) Induction of urothelial proliferation in rats by aristolochic acid through cell cycle progression via activation of cyclin D1/cdk4 and cyclin E/cdk2. Food Chem Toxicol 44(1):28–35

    Article  CAS  PubMed  Google Scholar 

  • Chang HR, Lian JD, Lo CW, Huang HP, Wang CJ (2007) Aristolochic acid-induced cell cycle G1 arrest in human urothelium SV-HUC-1 cells. Food Chem Toxicol 45(3):396–402

    Article  CAS  PubMed  Google Scholar 

  • Chen YY, Chiang SY, Wu HC, Kao ST, Hsiang CY, Ho TY, Lin JG (2010) Microarray analysis reveals the inhibition of nuclear factor-kappa B signaling by aristolochic acid in normal human kidney (HK-2) cells. Acta Pharmacol Sin 31(2):227–236

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen M, Gong L, Qi X, Xing G, Luan Y, Wu Y, Xiao Y, Yao J, Li Y, Xue X, Pan G, Ren J (2011) Inhibition of renal NQO1 activity by dicoumarol suppresses nitroreduction of aristolochic acid I and attenuates its nephrotoxicity. Toxicol Sci 122(2):288–296

    Article  CAS  PubMed  Google Scholar 

  • Correia I, Alonso-Monge R, Pla J (2010) MAPK cell-cycle regulation in Saccharomyces cerevisiae and Candida albicans. Future Microbiol 5(7):1125–1141

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Zheng F, Liu Y, Zheng D, Li X, Bo Y, Liu Y (2000) Aristolochic acid I-induced apoptosis in LLC-PK1 cells and amelioration of the apoptotic damage by calcium antagonist. Chin Med J (Engl) 113(5):418–424

    CAS  Google Scholar 

  • Gaul L, Mandl-Weber S, Baumann P, Emmerich B, Schmidmaier R (2008) Bendamustine induces G2 cell cycle arrest and apoptosis in myeloma cells: the role of ATM–Chk2–Cdc25A and ATM–p53–p21-pathways. J Cancer Res Clin Oncol 134(2):245–253

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Bao Q, Sun L, Huang X, Wang T, Zhang S, Li H, Zhang L (2013) Possible role of mtDNA depletion and respiratory chain defects in aristolochic acid I-induced acute nephrotoxicity. Toxicol Appl Pharmacol 266(2):198–203

    Article  CAS  PubMed  Google Scholar 

  • Kwak DH, Lee JH, Kim T, Ahn HS, Cho WK, Ha H, Hwang YH, Ma JY (2012) Aristolochia Manshuriensis Kom inhibits adipocyte differentiation by regulation of ERK1/2 and Akt pathway. PLoS One 7(11):e49530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Liu Z, Guo X, Shu J, Chen Z, Li L (2006) Aristolochic acid I-induced DNA damage and cell cycle arrest in renal tubular epithelial cells in vitro. Arch Toxicol 80(8):524–532

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wang Q, Yang X, Shen X, Zhang B (2009) Differential cytotoxic effects of denitroaristolochic acid II and aristolochic acids on renal epithelial cells. Toxicol Lett 184(1):5–12

    Article  CAS  PubMed  Google Scholar 

  • Nitzsche D, Melzig MF, Arlt VM (2013) Evaluation of the cytotoxicity and genotoxicity of aristolochic acid I—a component of Aristolochiaceae plant extracts used in homeopathy. Environ Toxicol Pharmacol 35(2):325–334

    Article  CAS  PubMed  Google Scholar 

  • Page K, Hershenson MB (2000) Mitogen-activated signaling and cell cycle regulation in airway smooth muscle. Front Biosci 5:D258–D267

    Article  CAS  PubMed  Google Scholar 

  • Pozdzik AA, Salmon IJ, Debelle FD, Decaestecker C, Van den Branden C, Verbeelen D, Deschodt-Lanckman MM, Vanherweghem JL, Nortier JL (2008) Aristolochic acid induces proximal tubule apoptosis and epithelial to mesenchymal transformation. Kidney Int 73(5):595–607

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Cai Y, Gong L, Liu L, Chen F, Xiao Y, Wu X, Li Y, Xue X, Ren J (2007) Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid. Toxicol Appl Pharmacol 222(1):105–110

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Garcia ME, Quiroga AG, Castro J, Ortiz A, Aller P, Mata F (2009) Inhibition of p38-MAPK potentiates cisplatin-induced apoptosis via GSH depletion and increases intracellular drug accumulation in growth-arrested kidney tubular epithelial cells. Toxicol Sci 111(2):413–423

    Article  CAS  PubMed  Google Scholar 

  • Romanov V, Whyard T, Bonala R, Johnson F, Grollman A (2011) Glutamate dehydrogenase requirement for apoptosis induced by aristolochic acid in renal tubular epithelial cells. Apoptosis 16(12):1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Rui HL, Wang YY, Cheng H, Chen YP (2012) JNK-dependent AP-1 activation is required for aristolochic acid-induced TGF-beta1 synthesis in human renal proximal epithelial cells. Am J Physiol Renal Physiol 302(12):F1569–F1575

    Article  CAS  PubMed  Google Scholar 

  • Schmeiser HH, Schoepe KB, Wiessler M (1988) DNA adduct formation of aristolochic acid I and II in vitro and in vivo. Carcinogenesis 9(2):297–303

    Article  CAS  PubMed  Google Scholar 

  • Schmeiser HH, Scherf HR, Wiessler M (1991) Activating mutations at codon 61 of the c-Ha-ras gene in thin-tissue sections of tumors induced by aristolochic acid in rats and mice. Cancer Lett 59(2):139–143

    Article  CAS  PubMed  Google Scholar 

  • Shen MY, Liu CL, Hsiao G, Liu CY, Lin KH, Chou DS, Sheu JR (2008) Involvement of p38 MAPK phosphorylation and nitrate formation in aristolochic acid-mediated antiplatelet activity. Planta Med 74(10):1240–1245

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Feng JM (2011) Aristolochic acid induces apoptosis of human umbilical vein endothelial cells in vitro by suppressing PI3K/Akt signaling pathway. Acta Pharmacol Sin 32(8):1025–1030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shibutani S, Dong H, Suzuki N, Ueda S, Miller F, Grollman AP (2007) Selective toxicity of aristolochic acids I and II. Drug Metab Dispos 35(7):1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Stark GR, Taylor WR (2004) Analyzing the G2/M checkpoint. Methods Mol Biol 280:51–82

    CAS  PubMed  Google Scholar 

  • Stiborova M, Frei E, Schmeiser HH (2008a) Biotransformation enzymes in development of renal injury and urothelial cancer caused by aristolochic acid. Kidney Int 73(11):1209–1211

    Article  CAS  PubMed  Google Scholar 

  • Stiborova M, Hudecek J, Frei E, Schmeiser HH (2008b) Contribution of biotransformation enzymes to the development of renal injury and urothelial cancer caused by aristolochic acid: urgent questions, difficult answers. Interdiscip Toxicol 1(1):8–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Stiborova M, Frei E, Arlt VM, Schmeiser HH (2009) The role of biotransformation enzymes in the development of renal injury and urothelial cancer caused by aristolochic acid: urgent questions and difficult answers. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 153(1):5–11

    Article  CAS  PubMed  Google Scholar 

  • Stiborova M, Levova K, Barta F, Shi Z, Frei E, Schmeiser HH, Nebert DW, Phillips DH, Arlt VM (2012) Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol Sci 125(2):345–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tentner AR, Lee MJ, Ostheimer GJ, Samson LD, Lauffenburger DA, Yaffe MB (2012) Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress. Mol Syst Biol 8:568

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiao Y, Ge M, Xue X, Wang C, Wang H, Wu X, Li L, Liu L, Qi X, Zhang Y, Li Y, Luo H, Xie T, Gu J, Ren J (2008) Hepatic cytochrome P450s metabolize aristolochic acid and reduce its kidney toxicity. Kidney Int 73(11):1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16(5):535–543, 531 p following 143

  • Yang H, Dou Y, Zheng X, Tan Y, Cheng J, Li L, Du Y, Zhu D, Lou Y (2011) Cysteinyl leukotrienes synthesis is involved in aristolochic acid I-induced apoptosis in renal proximal tubular epithelial cells. Toxicology 287(1–3):38–45

    Article  CAS  PubMed  Google Scholar 

  • Yu FY, Wu TS, Chen TW, Liu BH (2011) Aristolochic acid I induced oxidative DNA damage associated with glutathione depletion and ERK1/2 activation in human cells. Toxicol In Vitro 25(4):810–816

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Yang X, Wang J, Fan J, Kong Q, Yu X (2012) Aristolochic acid I induced autophagy extenuates cell apoptosis via ERK 1/2 pathway in renal tubular epithelial cells. PLoS One 7(1):e30312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou L, Fu P, Huang XR, Liu F, Lai KN, Lan HY (2010) Activation of p53 promotes renal injury in acute aristolochic acid nephropathy. J Am Soc Nephrol 21(1):31–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu S, Wang Y, Jin J, Guan C, Li M, Xi C, Ouyang Z, Chen M, Qiu Y, Huang M, Huang Z (2012) Endoplasmic reticulum stress mediates aristolochic acid I-induced apoptosis in human renal proximal tubular epithelial cells. Toxicol In Vitro 26(5):663–671

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Institutes of Health Grant P01ES004068 to Arthur P. Grollman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Romanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, V., Whyard, T.C., Waltzer, W.C. et al. Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation. Arch Toxicol 89, 47–56 (2015). https://doi.org/10.1007/s00204-014-1249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1249-z

Keywords

Navigation