Skip to main content

Advertisement

Log in

Bendamustine induces G2 cell cycle arrest and apoptosis in myeloma cells: the role of ATM-Chk2-Cdc25A and ATM-p53-p21-pathways

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Multiple myeloma is a fatal hematological disease caused by malignant transformation of plasma cells. Bendamustine has been proven to be a potent alternative to melphalan in phase 3 studies, yet its molecular mode of action is still poorly understood.

Methods

The four-myeloma cell lines NCI-H929, OPM-2, RPMI-8226, and U266 were cultured in vitro. Apoptosis was measured by flow cytometry after annexin V FITC and propidium iodide staining. Cell cycle distribution of cells was determined by DNA staining with propidium iodide. Intracellular levels of (phosphorylated) proteins were determined by western blot.

Results

We show that bendamustine induces apoptosis with an IC50 of 35–65 μg/ml and with cleavage of caspase 3. Incubation with 10–30 μg/ml results in G2 cell cycle arrest in all four-cell lines. The primary DNA-damage signaling kinases ATM and Chk2, but not ATR and Chk1, are activated. The Chk2 substrate Cdc25A phosphatase is degraded and Cdc2 is inhibited by inhibitory phosphorylation of Tyr15 accompanied by increased cyclin B levels. Additionally, p53 activation occurs as phosphorylation of Ser15, the phosphorylation site for ATM. p53 promotes Cdc2 inhibition by upregulation of p21. Targeting of p38 MAPK by the selective inhibitor SB202190 significantly increases bendamustine induced apoptosis. Additionally, SB202190 completely abrogates G2 cell cycle arrest.

Conclusion

Bendamustine induces ATM-Chk2-Cdc2-mediated G2 arrest and p53 mediated apoptosis. Inhibition of p38 MAPK augments apoptosis and abrogates G2 arrest and can be considered as a new therapeutic strategy in combination with bendamustine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196

    Article  PubMed  CAS  Google Scholar 

  • Agner J, Falck J, Lukas J, Bartek J (2005) Differential impact of diverse anticancer chemotherapeutics on the Cdc25A-degradation checkpoint pathway. Exp Cell Res 302:162–169

    Article  PubMed  CAS  Google Scholar 

  • Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF et al (1996) A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med 335:91–97

    Article  PubMed  CAS  Google Scholar 

  • Bode AM, Dong Z (2006) The enigmatic effects of caffeine in cell cycle and cancer. Cancer Lett 247:26–39

    Article  PubMed  Google Scholar 

  • Bozko P, Sabisz M, Larsen AK, Skladanowski A (2005) Cross-talk between DNA damage and cell survival checkpoints during G2 and mitosis: pharmacologic implications. Mol Cancer Ther 4:2016–2025

    Article  PubMed  CAS  Google Scholar 

  • Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O et al (2001) Initiation of a G2/M checkpoint after ultraviolet radiation requires P38 kinase. Nature 411:102–107

    Article  PubMed  CAS  Google Scholar 

  • Buscemi G, Perego P, Carenini N, Nakanishi M, Chessa L, Chen J et al (2004) Activation of ATM and Chk2 kinases in relation to the amount of DNA strand breaks. Oncogene 23:7691–7700

    Article  PubMed  CAS  Google Scholar 

  • Busino L, Chiesa M, Draetta GF, Donzelli M (2004) Cdc25A phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene 23:2050–2056

    Article  PubMed  CAS  Google Scholar 

  • Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K et al (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–1679

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi P, Eng WK, Zhu Y, Mattern MR, Mishra R, Hurle MR et al (1999) Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 18:4047–4054

    Article  PubMed  CAS  Google Scholar 

  • Child JA, Morgan GJ, Davies FE, Owen RG, Bell SE, Hawkins K et al (2003) Medical Research Council Adult Leukaemia Working Party. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 348:1875–1883

    Article  PubMed  CAS  Google Scholar 

  • Damia G, Broggini M (2004) Cell cycle checkpoint proteins and cellular response to treatment by anticancer agents. Cell cycle 3:46–50

    PubMed  CAS  Google Scholar 

  • Falk J, Mailand N, Syljuasen RG, Bartek J, Lukas J (2001) The ATM-Chk2-cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410:842–847

    Article  Google Scholar 

  • Garner AP, Weston CR, Todd DE, Balmanno K, Cook SJ (2002) Delta MEKK3:ER* activation induces a p38 alpha/beta 2-dependent cell cycle arrest at the G2 checkpoint. Oncogene 21:8089–8104

    Article  PubMed  CAS  Google Scholar 

  • Heider A, Niederle N (2001) Efficacy and toxicity of bendamustine in patients with relapsed low-grade Non Hodgkin’s lymphomas. Anticancer Drugs 12:725–729

    Article  PubMed  CAS  Google Scholar 

  • Herold M, Schulze A, Niederwieser D, Franke A, Fricke HJ, Richter P et al. for the East German Study Group Hematology and Oncology (OSHO) (2006). Bendamustine, vincristine and prednisone (BOP) versus cyclophosphamide, vincristine and prednisone (COP) in advanced indolent non-Hodgkin`s lymphoma and mantle cell lymphoma: results of a randomised phase 3 trial (OSHO# 19). J Cancer Res Clin Oncol 132:105–112

    Google Scholar 

  • Hideshima T, Akiyama M, Hayashi T, Richardson P, Schlossman R, Chauhan D et al (2003) Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood 101:703–705

    Article  PubMed  CAS  Google Scholar 

  • Hideshima T, Podar K, Chauhan D, Ishitsuka K, Mitsiades C, Tai YT et al (2004) P38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene 23:8766–8776

    Article  PubMed  CAS  Google Scholar 

  • Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H et al (2000) DNA-damage induced activation o P53 by the checkpoint kinase Chk2. Science 287:1824–1827

    Article  PubMed  CAS  Google Scholar 

  • Hoffken K, Merkle K, Schonfelder M, Anger G, Brandtner M, Ridwelski K, Seeber S (1998) Bendamustine as salvage treatment in patients with advanced progressive breast cancer: a phase II study. J Cancer Res Clin Oncol 124:627–632

    Article  PubMed  CAS  Google Scholar 

  • Kath R, Blumenstengel K, Fricke HJ, Hoffken K (2001) Bendamustine monotherapy in advanced and refractory chronic lymphocytic leukemia. J Cancer Res Clin Oncol 127:48–54

    Article  PubMed  CAS  Google Scholar 

  • Konstantinov SM, Kostovski A, Topashka-Ancheva M, Genova M, Berger MR (2002) Cytotoxic efficacy of bendamustine in human leukemia and breast cancer cell lines. J Cancer Res Clin Oncol 128:271–278

    Article  PubMed  CAS  Google Scholar 

  • Knop S, Straka C, Haen M, Schwedes R, Hebart H, Einsele H (2005) The eficiacy and toxicity of bendamustine in recurrent multiple myeloma after high-dose chemotherapy. Haematologica 90:1287–1288

    PubMed  CAS  Google Scholar 

  • Leoni L, Bailey B, Reifert J, Niemeyer C, Bendall H, Dauffenbach L, Kerfoot C (2003) SDX-105 (Bendamustine), a clinically active antineoplastic agent possesses a unique mechanism of action. Blood 102(11):534-II

    Google Scholar 

  • Lissitchkov T, Arnaudov G, Peytchev D, Merkle Kh (2006) Phase-I/II study to evaluate dose limiting toxicity, maximum tolerated dose, and tolerability of bendamustine HCl in pre-treated patients with B-chronic lymphocytic leukaemia (Binet stages B and C) requiring therapy. J Cancer Res Clin Oncol 132:99–104

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev 14:1448–1459

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S, Huang M, Elledge SJ (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282:1893–1897

    Article  PubMed  CAS  Google Scholar 

  • Mailand N, Falck J, Lukas C, Syljuåsen RG, Welcker M, Bartek J et al (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288:1425–1429

    Article  PubMed  CAS  Google Scholar 

  • Maity A, Hwang A, Janss A, Phillips P, McKenna WG, Muschel RJ (1996) Delayed cyclin B1 expression during the G2 arrest following DNA damage. Oncogene 13:1647–1657

    PubMed  CAS  Google Scholar 

  • Miyakoda M, Suzuki K, Kodama S, Watanabe M (2002) Activation of ATM and phosphorylation of p53 by heat shock. Oncogene 21:1090–1096

    Article  PubMed  CAS  Google Scholar 

  • Myeloma Trialists’ Collaborative Group (1998) Combination chemotherapy versus melphalan plus prednisone as treatment for multiple myeloma: an overview of 6,633 patients from 27 randomized trials. J Clin Oncol 16:3832–3842

    Google Scholar 

  • Navas TA, Nguyen AN, Hideshima T, Reddy M, Ma JY, Haghnazari E et al (2006) Inhibition of p38alpha MAPK enhances proteasome inhibitor-induced apoptosis of myeloma cells by modulating Hsp27, Bcl-X(L), Mcl-1 and p53 levels in vitro and inhibits tumor growth in vivo. Leukemia 20:1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Nguyen AN, Stebbins EG, Henson M, O’Young G, Choi SJ, Quon D et al (2006) Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation. Exp Cell Res 312:1909–1923

    Article  PubMed  CAS  Google Scholar 

  • Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–508

    Article  PubMed  CAS  Google Scholar 

  • O’Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA (2003) A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33:497–501

    Article  PubMed  CAS  Google Scholar 

  • Pedraza-Alva G, Koulnis M, Charland C, Thornton T, Clements JL, Schlissel MS et al (2006) Activation of p38 MAP kinase by DNA double-strand breaks in V(D)J recombination induces a G2/M cell cycle checkpoint. EMBO J 25:763–773

    Article  PubMed  CAS  Google Scholar 

  • Palumbo A, Bringhen S, Petrucci MT, Musto P, Rossini F, Nunzi M et al (2004) Intermediate-dose melphalan improves survival of myeloma patients aged 50 to 70: results of a randomized controlled trial. Blood 104:3052–3057

    Article  PubMed  CAS  Google Scholar 

  • Ponisch W, Mitrou PS, Merkle K, Herold M, Assmann M, Wilhelm G et al (2006) Treatment of bendamustine and prednisolone in patients with newly diagnosed multiple myeloma results in superior complete response rate, prolonged time to treatment failure and improved quality of life compared to treatment with Melphalan and Prednisone—a randomised phase 3 study of the East German Study group of Hematology and Oncology (OSHO). J Cancer Res Clin Oncol 132:205–212

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277:1497–1501

    Article  PubMed  CAS  Google Scholar 

  • Sarkaria JN, Busby EC, Tibbets RS, Roos P, Taya Y, Karnitz LM et al (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59:4375–4382

    PubMed  CAS  Google Scholar 

  • Strumberg D, Harstrick A, Doll K, Hoffmann B, Seeber S (1996) Bendamustine hydrochloride activity against doxorubicin-resistant human breast carcinoma cell lines. Anticancer Drugs 7:415–421

    Article  PubMed  CAS  Google Scholar 

  • Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY et al (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13:152–157

    PubMed  CAS  Google Scholar 

  • Turenne GA, Paul P, Laflair L, Price BD (2001) Activation of p53 transcriptional activity requires ATM’s kinase domain and multiple N-terminal serine residues of p53. Oncogene 20:5100–5110

    Article  PubMed  CAS  Google Scholar 

  • von Minckwitz G, Chernozemsky I, Sirakova L, Chilingirov P, Souchon R, Marschner N et al (2005) Bendamustine prolongs progression-free survival in metastatic breast cancer (MBC): a phase III prospective, randomized, multicenter trial of bendamustine hydrochloride, methotrexate and 5-fluorouracil (BMF) versus cyclophosphamide, methotrexate and 5-fluorouracil (CMF) as first-line treatment of MBC. Anticancer Drugs 16:871–877

    Article  Google Scholar 

  • Wang S, Yang J, Qian J, Wezeman M, Kwak LW, Yi Q (2006) Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood 107:2432–2439

    Article  PubMed  CAS  Google Scholar 

  • Yamane K, Taylor K, Kinsella TJ (2004) Mismatch repair-mediated G2/M arrest by 6-thioguanine involves the ATR-Chk1 pathway. Biochem Biophys Res Commun 318:297–302

    Article  PubMed  CAS  Google Scholar 

  • Yan T, Desai AB, Jacobberger JW, Sramkoski RM, Loh T, Kinsella TJ (2004) CHK1 and CHK2 are differentially involved in mismatch repair-mediated 6-thioguanine-induced cell cycle checkpoint responses. Mol Cancer Ther 3:1147–1157

    PubMed  CAS  Google Scholar 

  • Zulkowski K, Kath R, Semrau R, Merkle K, Hoffken K (2002) Regression of brain metastases from breast carcinoma after chemotherapy with bendamustine. J Cancer Res Clin Oncol 128:111–113

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Schmidmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaul, L., Mandl-Weber, S., Baumann, P. et al. Bendamustine induces G2 cell cycle arrest and apoptosis in myeloma cells: the role of ATM-Chk2-Cdc25A and ATM-p53-p21-pathways. J Cancer Res Clin Oncol 134, 245–253 (2008). https://doi.org/10.1007/s00432-007-0278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-007-0278-x

Keywords

Navigation