Skip to main content
Log in

Optimization of CFRP drilling process: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Carbon fiber-reinforced polymer (CFRP) is a lightweight composite material with high mechanical properties, which has been applied in many fields. Especially in the aerospace field, it is a preferable material to make different shape thin wall sheet parts, which needs to be assembled and connected with other parts through riveting or bolt. Therefore, a large number of holes need to be drilled on the CFRP. However, as CFRP is an inhomogeneity and anisotropy laminate, defects such as delamination, burrs, tear, and excessive roughness are easy to occur in the process of drilling holes. These defects will greatly reduce the service life of structural parts or even directly make them scrap. In this review, the generation mechanism and influencing factors of drilling defects of CFRP are explored. The relevant achievements of experimental optimization, algorithm optimization and finite element method optimization about traditional drilling process are summarized. The research progress of new drilling processes is introduced. The shortcomings of existing research and the future development direction are analyzed. This review will help researchers optimizing the CFRP drilling process, reduce the defects in the drilling process, improve the quality of drilling holes, and provide reference for drilling process of other composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Totaro G, Spena P, Giusto G, De Nicola F, Kiryenko S, Das S (2021) Highly efficient CFRP anisogrid lattice structures for central tubes of medium-class satellites: Design, manufacturing, and performance. Comp Struct 258:113368. https://doi.org/10.1016/j.compstruct.2020.113368

    Article  Google Scholar 

  2. Kobald M, Fischer U, Tomilin K, Petrarolo A, Schmierer C (2018) Hybrid experimental rocket Stuttgart: a low-cost technology demonstrator. J Spacecraft Rockets 55(2):484–500. https://doi.org/10.2514/1.A34035

    Article  Google Scholar 

  3. Ross CT (2005) A conceptual design of an underwater missile launcher. Ocean Eng 32(1):85–99. https://doi.org/10.1016/J.OCEANENG.2004.04.008

    Article  Google Scholar 

  4. Soutis C (2005) Fibre reinforced composites in aircraft construction. Prog Aerosp Sci 41(2):143–151. https://doi.org/10.1016/J.PAEROSCI.2005.02.004

    Article  Google Scholar 

  5. Ravishankar B, Nayak SK, Kader MA (2019) Hybrid composites for automotive applications–a review. J Reinf Plast Comp 38(18):835–845. https://doi.org/10.1177/0731684419849708

    Article  Google Scholar 

  6. Rubino F, Nisticò A, Tucci F, Carlone P (2020) Marine application of fiber reinforced composites: a review. J Mar Sci Eng 8(1):26. https://doi.org/10.3390/jmse8010026

    Article  Google Scholar 

  7. Chua CYX, Liu HC, Di Trani N, Susnjar A, Ho J, Scorrano G, Rhudy J, Sizovs A, Lolli G, Hernandez N, Nucci MC, Cicalo R, Ferrari M, Grattoni A (2021) Carbon fiber reinforced polymers for implantable medical devices. Biomaterials 271:120719. https://doi.org/10.1016/j.biomaterials.2021.120719

    Article  Google Scholar 

  8. Wang WX, Matsubara T, Hu J, Odahara S, Nagai T, Karasutani T, Ohya Y (2015) Experimental investigation into the influence of the flanged diffuser on the dynamic behavior of CFRP blade of a shrouded wind turbine. Renew Energ 78:386–397. https://doi.org/10.1016/J.RENENE.2015.01.028

    Article  Google Scholar 

  9. Ullah H, Harland AR, Silberschmidt VV (2015) Dynamic bending behaviour of woven composites for sports products: Experiments and damage analysis. Mater Des 88:149–156. https://doi.org/10.1016/J.MATDES.2015.08.147

    Article  Google Scholar 

  10. van Grootel A, Chang J, Wardle BL, Olivetti E (2020) Manufacturing variability drives significant environmental and economic impact: the case of carbon fiber reinforced polymer composites in the aerospace industry. J Clean Prod 261:121087. https://doi.org/10.1016/j.jclepro.2020.121087

  11. KoPlev AA, Lystrup A, Vorm T (1983) The cutting process, chips, and cutting forces in machining CFRP. Composites 14(4):371–376. https://doi.org/10.1016/0010-4361(83)90157-X

    Article  Google Scholar 

  12. Das M, Sahu S, Parhi DR (2021) Composite materials and their damage detection using AI techniques for aerospace application: A brief review. Mater Today Proc 44:955–960. https://doi.org/10.1016/j.matpr.2020.11.005

    Article  Google Scholar 

  13. Blanco D, Rubio EM, Marín MM, Davim JP (2021) Advanced materials and multi-materials applied in aeronautical and automotive fields: A systematic review approach. Procedia CIRP 99:196–201. https://doi.org/10.1016/J.PROCIR.2021.03.027

    Article  Google Scholar 

  14. Forster E, Clay S, Holzwarth R, Paul D (2008) Flight vehicle composite structures. In the 26th Congress of ICAS and 8th AIAA ATIO, p 8976. https://doi.org/10.2514/6.2008-8976

  15. Guida M, Marulo FA, Abrate S (2018) Advances in crash dynamics for aircraft safety. Prog Aerosp Sci 98:106–123. https://doi.org/10.1016/J.PAEROSCI.2018.03.008

    Article  Google Scholar 

  16. Vogelesang LB, Vlot A (2000) Development of fibre metal laminates for advanced aerospace structures. J Mater Process Tech 103(1):1–5. https://doi.org/10.1016/S0924-0136(00)00411-8

    Article  Google Scholar 

  17. Teti R (2002) Machining of composite materials. CIRP Ann 51(2):611–634. https://doi.org/10.1016/S0007-8506(07)61703-X

    Article  Google Scholar 

  18. Hao J, Wang F, Zhao M, Bai Y, Jia Z (2021) Drill bit with clip-edges based on the force control model for reducing the CFRP damage. J Reinf Plast Comp 40(5–6):206–219. https://doi.org/10.1177/0731684420956724

    Article  Google Scholar 

  19. Xu J, Lin T, Davim JP (2022) On the machining temperature and hole quality of CFRP laminates when using diamond-coated special drills. J. Compos. Sci 6(2):45. https://doi.org/10.3390/jcs6020045

    Article  Google Scholar 

  20. Liu H, Zhu W, Dong H, Ke Y (2017) A helical milling and oval countersinking end-effector for aircraft assembly. Mechatronics 46:101–114. https://doi.org/10.1016/J.MECHATRONICS.2017.07.004

    Article  Google Scholar 

  21. Geier N, Xu J, Pereszlai C, Poór DI, Davim JP (2021) Drilling of carbon fibre reinforced polymer (CFRP) composites: Difficulties, challenges and expectations. Procedia Manuf 54:284–289. https://doi.org/10.1016/j.promfg.2021.07.045

    Article  Google Scholar 

  22. Khashaba UA (2003) Delamination in drilling GFR-thermoset composites. In: Proceedings of the tenth International conference on aerospace sciences and aviation technology. The Military Technical College, pp 461–481. https://doi.org/10.21608/ASAT.2013.24453

  23. Liu D, Tang Y, Cong WL (2012) A review of mechanical drilling for composite laminates. Comp Struct. 94(4):1265–1279. https://doi.org/10.1016/J.COMPSTRUCT.2011.11.024

    Article  Google Scholar 

  24. Chen R, Li S, Li C, Li P, Jiang Y, Ko TJ (2021) Influence of fiber direction and processing parameters on drilling temperature of CFRP. J Mech Sci Technol 35(4):1663–1669. https://doi.org/10.1007/s12206-021-0329-2

    Article  Google Scholar 

  25. Ramirez C, Poulachon G, Rossi F, M’Saoubi R (2014) Tool wear monitoring and hole surface quality during CFRP drilling. Proced CIRP 13:163–168. https://doi.org/10.1016/j.procir.2014.04.028

    Article  Google Scholar 

  26. Jugrestan CI, Popa MS, Sattel S, Cotarga AE, Veres OV, Don COC (2017) Tool material, tool wear and machined hole quality evaluation at CFRP drilling. In MATEC Web of Conferences, vol 112. EDP Sciences, p 01015. https://doi.org/10.1051/MATECCONF/201711201015

  27. Gaugel S, Sripathy P, Haeger A, Meinhard D, Bernthaler T, Lissek F, Kaufeld M, Knoblauch V, Schneider G (2016) A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP). Comp Struct. 155:173–183. https://doi.org/10.1016/J.COMPSTRUCT.2016.08.004

    Article  Google Scholar 

  28. Wang F, Qian B, Jia Z, Fu R, Cheng D (2017) Secondary cutting edge wear of one-shot drill bit in drilling CFRP and its impact on hole quality. Comp Struct. 178:341–352. https://doi.org/10.1016/j.compstruct.2017.04.024

    Article  Google Scholar 

  29. Lazar MB, Xirouchakis P (2011) Experimental analysis of drilling fiber reinforced composites. Int J Mach Tool Manuf 51(12):937–946. https://doi.org/10.1016/J.IJMACHTOOLS.2011.08.009

    Article  Google Scholar 

  30. Xu J, Lin T, Chen M, Davim JP (2021) Machining responses of high-strength carbon/epoxy composites using diamond-coated brad spur drills. Mater Manuf Process 36(6):722–729. https://doi.org/10.1080/10426914.2020.1854475

    Article  Google Scholar 

  31. Girot F, Dau F, Gutiérrez-Orrantia ME (2017) New analytical model for delamination of CFRP during drilling. J Mater Process Tech 240:332–343. https://doi.org/10.1016/J.JMATPROTEC.2016.10.007

    Article  Google Scholar 

  32. Ho-Cheng H, Dharan CKH (1990) Delamination during drilling in composite laminates. J Manuf Sci E-T ASME. https://doi.org/10.1115/1.2899580

  33. Chen WC (1997) Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates. Int J Mach Tool Manuf 37(8):1097–1108. https://doi.org/10.1016/S0890-6955(96)00095-8

    Article  Google Scholar 

  34. Davim JP, Reis P (2003) Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Comp Struct. 59(4):481–487. https://doi.org/10.1016/S0263-8223(02)00257-X

    Article  Google Scholar 

  35. Krishnamoorthy A, Boopathy SR, Palanikumar K (2009) Delamination analysis in drilling of CFRP composites using response surface methodology. J Compos Mater 43(24):2885–2902. https://doi.org/10.1177/0021998309345309

    Article  Google Scholar 

  36. Gaitonde V, Karnik SR, Rubio JC, Correia AE, Abrao AM, Davim JP (2008) Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. J Mater Process Tech 203(1–3):431–438. https://doi.org/10.1016/J.JMATPROTEC.2007.10.050

    Article  Google Scholar 

  37. Heisel U, Pfeifroth T (2012) Influence of point angle on drill hole quality and machining forces when drilling CFRP. Proced CIRP 1:471–476. https://doi.org/10.1016/J.PROCIR.2012.04.084

    Article  Google Scholar 

  38. Shyha I, Soo SL, Aspinwall D, Bradley S (2010) Effect of laminate configuration and feed rate on cutting performance when drilling holes in carbon fibre reinforced plastic composites. J Mater Process Tech 210(8):1023–1034. https://doi.org/10.1016/J.JMATPROTEC.2010.02.011

    Article  Google Scholar 

  39. Ameur MF, Habak M, Kenane M, Aouici H, Cheikh M (2017) Machinability analysis of dry drilling of carbon/epoxy composites: cases of exit delamination and cylindricity error. Int J Adv Manuf Technol 88(9):2557–2571. https://doi.org/10.1007/S00170-016-8967-8

    Article  Google Scholar 

  40. Sorrentino L, Turchetta S, Bellini C (2018) A new method to reduce delaminations during drilling of FRP laminates by feed rate control. Comp Struct. 186:154–164. https://doi.org/10.1016/J.COMPSTRUCT.2017.12.005

    Article  Google Scholar 

  41. Durao LMP, Tavares JMRS, Albuquerque V, Goncalves DJS (2013) Damage evaluation of drilled carbon/epoxy laminates based on area assessment methods. Comp Struct. 96(FEB.):576–583. https://doi.org/10.1016/J.COMPSTRUCT.2012.08.003

    Article  Google Scholar 

  42. Tsao CC, Kuo KL, Hsu IC (2012) Evaluation of a novel approach to a delamination factor after drilling composite laminates using a core–saw drill. Int J Adv Manuf Tech 59(5):617–622. https://doi.org/10.1007/S00170-011-3532-Y

    Article  Google Scholar 

  43. Feito N, Lopez-Puente J, Santiuste C, Miguelez MH (2014) Numerical prediction of delamination in CFRP drilling. Comp Struct 108(1):677–683. https://doi.org/10.1016/J.COMPSTRUCT.2013.10.014

    Article  Google Scholar 

  44. Xu J, Li C, Mi S, An Q, Chen M (2018) Study of drilling-induced defects for CFRP composites using new criteria. Comp Struct 201:1076–1087. https://doi.org/10.1016/J.COMPSTRUCT.2018.06.051

    Article  Google Scholar 

  45. Wang Q, Jia X (2021) Analytical study and experimental investigation on delamination in drilling of CFRP laminates using twist drills. Thin Wall Struct 165:107983. https://doi.org/10.1016/J.TWS.2021.107983

  46. Marques AT, Durão LM, Magalhães AG, Silva JF, Tavares JMR (2009) Delamination analysis of carbon fibre reinforced laminates: evaluation of a special step drill. Compos Sci Technol 69(14):2376–2382. https://doi.org/10.1016/J.COMPSCITECH.2009.01.025

    Article  Google Scholar 

  47. Tsao CC, Hocheng H (2007) Effect of tool wear on delamination in drilling composite materials. Int J Mech Sci 49(8):983–988. https://doi.org/10.1016/j.ijmecsci.2007.01.001

    Article  Google Scholar 

  48. Faraz A, Biermann D, Weinert K (2009) Cutting edge rounding: an innovative tool wear criterion in drilling CFRP composite laminates. Int J Mach Tool Manuf 49(15):1185–1196. https://doi.org/10.1016/J.IJMACHTOOLS.2009.08.002

    Article  Google Scholar 

  49. Gaugel S, Sripathy P, Haeger A, Meinhard D, Bernthaler T, Lissek F et al (2016) A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP). Comp Struct 155:173–183. https://doi.org/10.1016/J.COMPSTRUCT.2016.08.004

    Article  Google Scholar 

  50. Dogrusadik A, Kentli AYKUT (2017) Comparative assessment of support plates’ influences on delamination damage in micro-drilling of CFRP laminates. Comp Struct. 173:156–167. https://doi.org/10.1016/J.COMPSTRUCT.2017.04.031

    Article  Google Scholar 

  51. Hrechuk A, Bushlya V, Ståhl JE (2018) Hole-quality evaluation in drilling fiber-reinforced composites. Comp Struct. 204:378–387. https://doi.org/10.1016/J.COMPSTRUCT.2018.07.105

    Article  Google Scholar 

  52. Fernández-Pérez J, Díaz-Álvarez J, Miguélez MH, Cantero JL (2021) Combined analysis of wear mechanisms and delamination in CFRP drilling. Comp Struct. 255:112774. https://doi.org/10.1016/j.compstruct.2020.112774

    Article  Google Scholar 

  53. Xu J, An QL, Cai X, Chen M (2013) Drilling machinability evaluation on new developed high-strength T800S/250F CFRP laminates. Int J Precis Eng Man 14(10):1687–1696. https://doi.org/10.1007/S12541-013-0252-2

    Article  Google Scholar 

  54. Qiu KX, Wang CD, An QL, Chen M (2014) Defects study on drilling of carbon fiber reinforced polymer (CFRP) laminates. Mater Sci Forum 800–801:61–65. https://doi.org/10.4028/www.scientific.net/MSF.800-801.61

    Article  Google Scholar 

  55. Wang F, Wang X, Zhao X, Bi G, Fu R (2020) A numerical approach to analyze the burrs generated in the drilling of carbon fiber reinforced polymers (CFRPs). Int J Adv Manuf Tech 106(7):3533–3546. https://doi.org/10.1007/s00170-019-04872-y

    Article  Google Scholar 

  56. Su F, Deng Z , Qiu X, Sun F, Wu Q (2020) Morphological characteristics and formation mechanisms of the ud-CFRP drill exit-damages. Int J Adv Manuf Tech 107(19). https://doi.org/10.1007/s00170-020-05186-0

  57. Ji W, Wang YW, Li YF, Yan FG, Liu XL (2011) Study of exit burr formation of CFRP. Advanced Materials Research 188:154–157. https://doi.org/10.4028/www.scientific.net/AMR.188.154

    Article  Google Scholar 

  58. Wang D, Wang F, Wang Z, Bi G, Wang Q (2018) Influence of dynamic change of fiber cutting angle on surface damage in CFRP milling. In; Recent Advances in Intelligent Manufacturing. Springer, Singapore, pp 428–439. https://doi.org/10.1007/978-981-13-2396-6_40

  59. Geier N, Szalay T, Takács M (2019) Analysis of thrust force and characteristics of uncut fibres at non-conventional oriented drilling of unidirectional carbon fibre-reinforced plastic (UD-CFRP) composite laminates. Int J Adv Manuf Tech 100(9):3139–3154. https://doi.org/10.1007/S00170-018-2895-8

    Article  Google Scholar 

  60. Zhang B, Wang F, Wang Q, Zhao X (2020) Novel fiber fracture criteria for revealing forming mechanisms of burrs and cracking at hole-exit in drilling carbon fiber reinforced plastic. J Mater Process Tech 289. https://doi.org/10.1016/j.jmatprotec.2020.116934

    Article  Google Scholar 

  61. Geier N, Pereszlai C, Poór DI, Balázs BZ (2021) Drilling of curved carbon fibre reinforced polymer (CFRP) composite plates. Procedia CIRP 99:404–408. https://doi.org/10.1016/J.PROCIR.2021.03.057

    Article  Google Scholar 

  62. Chen Y, Guo X, Zhang K, Guo D, Zhou C, Gai L (2019) Study on the surface quality of CFRP machined by micro-textured milling tools. J Manuf Process 37:114–123. https://doi.org/10.1016/J.JMAPRO.2018.11.021

    Article  Google Scholar 

  63. Wang FJ, Yin JW, Ma JW, Jia ZY, Yang F, Niu B (2017) Effects of cutting edge radius and fiber cutting angle on the cutting-induced surface damage in machining of unidirectional CFRP composite laminates. Int J Adv Manuf Tech 91(9):3107–3120. https://doi.org/10.1007/S00170-017-0023-9

    Article  Google Scholar 

  64. Cococcetta NM, Pearl D, Jahan MP, Ma J (2020) Investigating surface finish, burr formation, and tool wear during machining of 3D printed carbon fiber reinforced polymer composite. J Manuf Process 56. https://doi.org/10.1016/j.jmapro.2020.04.025

    Article  Google Scholar 

  65. Pereszlai C, Geier N, Poór DI, Balázs BZ, Póka G (2021) Drilling fibre reinforced polymer composites (CFRP and gfrp): an analysis of the cutting force of the tilted helical milling process. Comp Struct. 113646. https://doi.org/10.1016/J.COMPSTRUCT.2021.113646

    Article  Google Scholar 

  66. Wang F, Gu T, Wang X, Jin X, Zhang B (2021) Analysis of burr and tear in milling of carbon fiber reinforced plastic (CFRP) using finite element method. Appl Compos Mater 28(4):991–1018. https://doi.org/10.1007/s10443-021-09896-w

    Article  Google Scholar 

  67. Liu S, Wang N, Zhang K, Luo B (2022) A subjective-objective evaluation method of hole surface quality in drilling CFRP-Ti stacks. Proc Inst Mech Eng B-J Eng 236(1–2):64–76. https://doi.org/10.1177/0954405420971076

    Article  Google Scholar 

  68. Chen T, Wang C, Xiang J, Wang Y (2020) Study on tool wear mechanism and cutting performance in helical milling of CFRP with stepped bi-directional milling cutters. Int J Adv Manuf Tech 111(9–10):1–8. https://doi.org/10.1007/s00170-020-06305-7

    Article  Google Scholar 

  69. Wern CW, Ramulu M, Colligan K (1993) A study of the surface texture of composite drilled holes. J Mater Process Tech 37(1–4):373–389. https://doi.org/10.1016/0924-0136(93)90103-D

    Article  Google Scholar 

  70. Mansour G, Kyratsis P, Korlos A, Tzetzis D (2021) Investigation into the effect of cutting conditions in turning on the surface properties of filament winding GFRP pipe rings. Machines 9(1):16. https://doi.org/10.3390/MACHINES9010016

    Article  Google Scholar 

  71. Yaşar N, Günay M (2019) Experimental investigation on novel drilling strategy of CFRP laminates using variable feed rate. J Braz Soc Mech Sci 41(3):1–12. https://doi.org/10.1007/s40430-019-1658-2

    Article  Google Scholar 

  72. Altin Karataş M, Motorcu AR, Gökkaya H (2021) Study on delamination factor and surface roughness in abrasive water jet drilling of carbon fiber-reinforced polymer composites with different fiber orientation angles. J Braz Soc Mech Sci 43(1):1–29. https://doi.org/10.1007/s40430-020-02741-4

    Article  Google Scholar 

  73. Li MJ, Soo SL, Aspinwall DK, Pearson D, Leahy W (2014) Influence of lay-up configuration and feed rate on surface integrity when drilling carbon fibre reinforced plastic (CFRP) composites. Proced CIRP 13:399–404

    Article  Google Scholar 

  74. Li MJ, Soo SL, Aspinwall DK, Pearson D, Leahy W (2018) Study on tool wear and workpiece surface integrity following drilling of CFRP laminates with variable feed rate strategy. Procedia CIRP 71:407–412. https://doi.org/10.1016/j.procir.2018.05.055

    Article  Google Scholar 

  75. Kumar D, Singh KK (2016) An experimental investigation of surface roughness in the drilling of MWCNT doped carbon/epoxy polymeric composite material. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing. https://doi.org/10.1088/1757-899X/149/1/012096

  76. Xu J, An Q, Chen M (2014) A comparative evaluation of polycrystalline diamond drills in drilling high-strength T800S/250F CFRP. Comp Struct 117:71–82. https://doi.org/10.1016/J.COMPSTRUCT.2014.06.034

    Article  Google Scholar 

  77. Geier N, Pereszlai C (2020) Analysis of characteristics of surface roughness of machined CFRP composites. Period Polytech Mech Eng 64(1):67–80. https://doi.org/10.3311/ppme.14436

    Article  Google Scholar 

  78. Ogawa K, Aoyama E, Inoue H, Hirogaki T, Nobe H, Kitahara Y, Katayama T, Gunjima M (1997) Investigation on cutting mechanism in small diameter drilling for GFRP (thrust force and surface roughness at drilled hole wall). Comp Struct 38(1–4):343–350. https://doi.org/10.1016/S0263-8223(97)00069-X

    Article  Google Scholar 

  79. Wern CW, Ramulu M, Colligan K (1993) A study of the surface texture of composite drilled holes. J Mater Process Tech 37(1–4):373–389. https://doi.org/10.1016/0924-0136(93)90103-D

    Article  Google Scholar 

  80. Davim JP, Reis P, Antonio CC (2004) Experimental study of drilling glass fiber reinforced plastics (GFRP) manufactured by hand lay-up. Compos Sci Technol 64(2):289–297. https://doi.org/10.1016/S0266-3538(03)00253-7

    Article  Google Scholar 

  81. Tan CL, Azmi AI, Muhammad N (2016) Delamination and surface roughness analyses in drilling hybrid carbon/glass composite. Mater Manuf Process 31(10):1366–1376. https://doi.org/10.1080/10426914.2015.1103864

    Article  Google Scholar 

  82. Yaşar N, Korkmaz ME, Günay M (2017) Investigation on hole quality of cutting conditions in drilling of CFRP composite. In MATEC web of conferences . EDP Sciences. https://doi.org/10.1051/MATECCONF/201711201013

  83. Rawat S, Attia H (2009) Wear mechanisms and tool life management of WC–Co drills during dry high speed drilling of woven carbon fibre composites. Wear 267(5–8):1022–1030. https://doi.org/10.1016/J.WEAR.2009.01.031

    Article  Google Scholar 

  84. Abdullah MSB, Nguyen D, Kim D (2020) A study of cutting edge geometry change and surface roughness in drilling of carbon fiber reinforced plastics (CFRP) using uncoated and coated tools. In: SAMPE 2020 Virtual Conference Series, SAMPE. https://doi.org/10.33599/s.20.0218

  85. Shahabaz SM, Shetty N, Shetty SD, Sharma SS (2020) Surface roughness analysis in the drilling of carbon fiber/epoxy composite laminates using hybrid Taguchi-Response experimental design. Mater Res Express 7(1):015322. https://doi.org/10.1088/2053-1591/ab6198

    Article  Google Scholar 

  86. Tsao CC, Hocheng H (2008) Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J Mater Process Tech 203(1–3):342–348. https://doi.org/10.1016/j.jmatprotec.2006.04.126

    Article  Google Scholar 

  87. Palanikumar K, Latha B, Senthilkumar VS, Davim JP (2013) Application of artificial neural network for the prediction of surface roughness in drilling GFRP composites. In: Mater Sci Forum. Trans Tech Publications, pp 21–36 Ltd. https://doi.org/10.4028/www.scientific.net/MSF.766.21

  88. Eneyew ED, Ramulu M (2014) Experimental study of surface quality and damage when drilling unidirectional CFRP composites. J Mater Res Technol 3(4):354–362. https://doi.org/10.1016/J.JMRT.2014.10.003

    Article  Google Scholar 

  89. Ayyıldız EA, Ayyıldız M, Kara F (2021) Optimization of surface roughness in drilling medium-density fiberboard with a parallel robot. Adv Mater Sci Eng. https://doi.org/10.1155/2021/6658968

    Article  Google Scholar 

  90. Basmaci G, Yoruk AS, Koklu U, Morkavuk S (2017) Impact of cryogenic condition and drill diameter on drilling performance of CFRP. Appl Sci-Basel 7(7):667. https://doi.org/10.3390/APP7070667

    Article  Google Scholar 

  91. Koklu U, Morkavuk S (2019) Cryogenic drilling of carbon fiber-reinforced composite (CFRP). Surf Rev Lett 26(09):1950060. https://doi.org/10.1142/S0218625X19500604

    Article  Google Scholar 

  92. Abish J, Samal P, Narenther MS, Kannan C, Balan ASS (2018) Assessment of drilling-induced damage in CFRP under chilled air environment. Mater Manuf Process 33(12):1361–1368. https://doi.org/10.1080/10426914.2017.1415452

    Article  Google Scholar 

  93. Hoffmann N, Souza GS, Souza AJ, Tita V (2021) Delamination and hole wall roughness evaluation in air-cooled drilling of carbon fiber-reinforced polymer. J Compos Mater 55(23):3161–3174. https://doi.org/10.1177/00219983211009281

    Article  Google Scholar 

  94. Xu J, Huang X, Chen M, Davim JP (2020) Drilling characteristics of carbon/epoxy and carbon/polyimide composites. Mater Manuf Process 35(15):1732–1740. https://doi.org/10.1080/10426914.2020.1784935

    Article  Google Scholar 

  95. Jeyaprakash N, Yang CH, Kumar DR (2020) Machinability study on CFRP composite using Taguchi based grey relational analysis. Mater Today Proc 21:1425–1431. https://doi.org/10.1016/j.matpr.2019.08.212

    Article  Google Scholar 

  96. Wang X, Kwon P, Pelikhatyy R, Kim D (2014) Characterization of fiber pull-outs in drilled CFRP holes using confocal laser microscope. Int Manuf Sci Eng Conf Am Soc Mech Eng. https://doi.org/10.1115/MSEC2014-4115

    Article  Google Scholar 

  97. Li P, Qiu X, Li C, Niu Q, Chen A, Ko TJ (2019) Hole exit damage and tool wear during the drilling of CFRP with a double-point angle drill. J Mech Sci Technol 33(5):2363–2370. https://doi.org/10.1007/S12206-019-0436-5

    Article  Google Scholar 

  98. Hou G, Zhang K, Fan X, Luo B, Cheng H, Yan X, Li Y (2020) Analysis of exit-ply temperature characteristics and their effects on occurrence of exit-ply damages during UD CFRP drilling. Comp Struct. 231:111456. https://doi.org/10.1016/j.compstruct.2019.111456

    Article  Google Scholar 

  99. Fu R, Jia Z, Wang F, Jin Y, Sun D, Yang L, Cheng D (2018) Drill-exit temperature characteristics in drilling of UD and MD CFRP composites based on infrared thermography. Int J Mach Tool Manuf 135:24–37. https://doi.org/10.1016/j.ijmachtools.2018.08.002

    Article  Google Scholar 

  100. Alizadeh Ashrafi S, Miller PW, Wandro KM, Kim D (2016) Characterization and effects of fiber pull-outs in hole quality of carbon fiber reinforced plastics composite. Materials 9(10):828. https://doi.org/10.3390/ma9100828

    Article  Google Scholar 

  101. Devitte C, Souza AJD, Schirmer GV (2021) Temperature evaluation in CFRP drilling. In The fifth Brazilian Conference on Composite Materials. BCCM 5 Sao Carlos School of Engineering. University of Sao Paulo

  102. Li M, Li S, Yang X (2020) The influence of machining processes on strain distribution and progressive failure characteristics when producing holes in CFRP. Comp Struct 238:111994. https://doi.org/10.1016/j.compstruct.2020.111994

  103. Zhang B, Wang F, Wang X, Li Y, Wang Q (2020) Optimized selection of process parameters based on reasonable control of axial force and hole-exit temperature in drilling of CFRP. Int J Adv Manuf Tech 110(3):797–812. https://doi.org/10.1007/s00170-020-05868-9

    Article  Google Scholar 

  104. Shi B, Sadek A, Meshreki M, Attia H, Duquesne J (2017) Numerical and experimental investigation of thermal damage in drilling of CFRP composites. Int J Robat Mechatron 4(1):16–21. https://doi.org/10.21535/ijrm.v4i1.972

    Article  Google Scholar 

  105. Vermeeren CAJR (2003) An historic overview of the development of fibre metal laminates. Appl Compos Mater 10(4):189–205. https://doi.org/10.1023/A:1025533701806

    Article  Google Scholar 

  106. Vlot A, Gunnink JW (2011) Fibre metal laminates: an introduction. Springer Science, Business Media

  107. Thirukumaran M, Siva I, Jappes JW, Manikandan V (2018) Forming and drilling of fiber metal laminates–a review. J Reinf Plast Comp 37(14):981–990. https://doi.org/10.1177/0731684418771194

    Article  Google Scholar 

  108. Qi Z, Zhang K, Li Y, Liu S, Cheng H (2014) Critical thrust force predicting modeling for delamination-free drilling of metal-FRP stacks. Comp Struct. 107:604–609. https://doi.org/10.1016/j.compstruct.2013.07.036

    Article  Google Scholar 

  109. Gojny FH, Wichmann MH, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Compos Sci Technol 65(15–16):2300–2313. https://doi.org/10.1016/J.COMPSCITECH.2005.04.021

    Article  Google Scholar 

  110. Davis DC, Wilkerson JW, Zhu J, Hadjiev VG (2011) A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes. Compos Sci Technol 71(8):1089–1097. https://doi.org/10.1016/J.COMPSCITECH.2011.03.014

    Article  Google Scholar 

  111. Li N, Li Y, Zhou J, He Y, Hao X (2015) Drilling delamination and thermal damage of carbon nanotube/carbon fiber reinforced epoxy composites processed by microwave curing. Int J Mach Tool Manu 97:11–17. https://doi.org/10.1016/J.IJMACHTOOLS.2015.06.005

    Article  Google Scholar 

  112. Erturk AT, Yarar E, Vatansever F, Sahin AE, Kilinçel M, Alpay YO (2021) A comparative study of mechanical and machining performance of polymer hybrid and carbon fiber epoxy composite materials. Polym Polym Compos 29(9_suppl):S655–S666. https://doi.org/10.1177/09673911211020620

    Article  Google Scholar 

  113. Lee JH, Ge JC, Song JH (2021) Study on burr formation and tool wear in drilling CFRP and its hybrid composites. Appl Sci-Basel 11(1):384. https://doi.org/10.3390/app11010384

    Article  Google Scholar 

  114. Bonhin EP, David-Müzel S, de Sampaio Alves M. C, Botelho EC, Ribeiro MV (2021) A review of mechanical drilling on fiber metal laminates. J Compos Mater 55(6):843–869. https://doi.org/10.1177/0021998320957743

    Article  Google Scholar 

  115. Wang B, Gao H, Cao B, Zhuang Y, Zhao Z (2014) Mechanism of damage generation during drilling of carbon/epoxy composites and titanium alloy stacks. Proc Inst Mech Eng B-J Eng 228(7):698–706. https://doi.org/10.1177/0954405413508117

    Article  Google Scholar 

  116. Xu J, Li C, Chen M, El Mansori M, Davim JP (2020) On the analysis of temperatures, surface morphologies and tool wear in drilling CFRP/Ti6Al4V stacks under different cutting sequence strategies. Comp Struct 234:111708. https://doi.org/10.1016/j.compstruct.2019.111708

  117. Zitoune R, Krishnaraj V, Collombet F (2010) Study of drilling of composite material and aluminium stack. Comp Struct 92(5):1246–1255. https://doi.org/10.1016/J.COMPSTRUCT.2009.10.010

    Article  Google Scholar 

  118. Zitoune R, Krishnaraj V, Almabouacif BS, Collombet F, Sima M, Jolin A (2012) Influence of machining parameters and new nano-coated tool on drilling performance of CFRP/Aluminium sandwich. Compos Part B-Eng 43(3):1480–1488. https://doi.org/10.1016/J.COMPOSITESB.2011.08.054

    Article  Google Scholar 

  119. Wang CY, Chen YH, An QL, Cai XJ, Ming WW, Chen M (2015) Drilling temperature and hole quality in drilling of CFRP/aluminum stacks using diamond coated drill. Int J Precis Eng Man 16(8):1689–1697. https://doi.org/10.1007/S12541-015-0222-Y

    Article  Google Scholar 

  120. Wang GD, Melly SK, Ahmed SK (2018) Finite element study into the effects of fiber orientations and stacking sequence on drilling induced delamination in CFRP/Al stack. Sci Eng Compos Mater 25(3):555–563. https://doi.org/10.1515/secm-2016-0161

    Article  Google Scholar 

  121. Angelone R, Caggiano A, Improta I, Nele L, Teti R (2019) Characterization of hole quality and temperature in drilling of Al/CFRP stacks under different process condition. Proced CIRP 79:319–324. https://doi.org/10.1016/J.PROCIR.2019.02.074

    Article  Google Scholar 

  122. Ashrafi SA, Sharif S, Farid AA, Yahya MY (2014) Performance evaluation of carbide tools in drilling CFRP-Al stacks. J Compos Mater 48(17):2071–2084. https://doi.org/10.1177/0021998313494429

    Article  Google Scholar 

  123. Janakiraman A, Pemmasani S, Sheth S, Kannan C, Balan ASS (2020) Experimental investigation and parametric optimization on hole quality assessment during drilling of CFRP/GFRP/Al stacks. J Inst Eng (India) Ser C 101(2):291–302. https://doi.org/10.1007/s40032-020-00563-w

    Article  Google Scholar 

  124. Devitte C, Souza GS, Souza AJ, Tita V (2021) Optimization for drilling process of metal-composite aeronautical structures. Sci Eng Compos Mater 28(1):264–275. https://doi.org/10.1515/secm-2021-0027

    Article  Google Scholar 

  125. Carvajal R, González-R PL, Lozano S (2011) Research study of factors affecting difference between hole diameters in hybrid metal-composite drilling. Proc Inst Mech Eng B-J Eng 225(7):991–1000. https://doi.org/10.1177/2041297510393444

    Article  Google Scholar 

  126. Kim D, Beal A, Kwon P (2016) Effect of tool wear on hole quality in drilling of carbon fiber reinforced plastic–titanium alloy stacks using tungsten carbide and polycrystalline diamond tools. J Manuf Sci E-T ASME 138(3). https://doi.org/10.1115/1.4031052

  127. Xu J, El Mansori M (2016) Experimental study on drilling mechanisms and strategies of hybrid CFRP/Ti stacks. Comp Struct. 157:461–482. https://doi.org/10.1016/J.COMPSTRUCT.2016.07.025

    Article  Google Scholar 

  128. Kim D, Beal A, Kang K, Kim SY (2017) Hole quality assessment of drilled CFRP and CFRP-Ti stacks holes using polycrystalline diamond (PCD) tools. Carbon Lett 23:1–8. https://doi.org/10.5714/CL.2017.23.001

    Article  Google Scholar 

  129. Impero F, Dix M, Squillace A, Prisco U, Palumbo B, Tagliaferri F (2018) A comparison between wet and cryogenic drilling of CFRP/Ti stacks. Mater Manuf Process 33(12):1354–1360. https://doi.org/10.1080/10426914.2018.1453162

    Article  Google Scholar 

  130. Xu J, Zhou L, Chen M, Ren F (2019) Experimental study on mechanical drilling of carbon/epoxy composite-Ti6Al4V stacks. Mater Manuf Process 34(7):715–725. https://doi.org/10.1080/10426914.2019.1594275

    Article  Google Scholar 

  131. Prisco U, Impero F, Rubino F (2019) Peck drilling of CFRP/titanium stacks: effect of tool wear on hole dimensional and geometrical accuracy. Prod Eng 13(5):529–538. https://doi.org/10.1007/s11740-019-00915-1

    Article  Google Scholar 

  132. Xu J, El Mansori M, Voisin J, Chen M, Ren F (2019) On the interpretation of drilling CFRP/Ti6Al4V stacks using the orthogonal cutting method: Chip removal mode and subsurface damage formation. J Manuf Process 44:435–447. https://doi.org/10.1016/J.JMAPRO.2019.05.052

    Article  Google Scholar 

  133. Xu J, Ji M, Davim JP, Chen M., El Mansori M, Krishnaraj V (2020) Comparative study of minimum quantity lubrication and dry drilling of CFRP/titanium stacks using TiAlN and diamond coated drills. Comp Struct 234:111727. https://doi.org/10.1016/j.compstruct.2019.111727

  134. Kim D, Swan SR, He B, Khominich V, Bell E, Lee SW, Kim TG (2021) A study on the machinability of advanced arc PVD AlCrN-coated tungsten carbide tools in drilling of CFRP/titanium alloy stacks. Carbon Lett 31(3):497–507. https://doi.org/10.1007/s42823-020-00180-8

    Article  Google Scholar 

  135. Kolesnyk V, Peterka J, Kuruc M, Šimna V, Moravčíková J, Vopát T, Lisovenko D (2020) Experimental study of drilling temperature, geometrical errors and thermal expansion of drill on hole accuracy when drilling CFRP/Ti alloy stacks. Materials 13(14):3232. https://doi.org/10.3390/ma13143232

    Article  Google Scholar 

  136. Qiu XY, Yu Z, Li CP, Niu QL, Li SJ, Li PN, Ko TJ (2021) Influence of main cutting edge structure on hole defects in CFRP/titanium alloy stacks drilling. J Manuf Process 69:503–513. https://doi.org/10.1016/j.jmapro.2021.07.061

    Article  Google Scholar 

  137. Jia ZY, Zhang C, Wang FJ, Fu R, Chen C (2020) An investigation of the effects of step drill geometry on drilling induced delamination and burr of Ti/CFRP stacks. Comp Struct 235:111786. https://doi.org/10.1016/j.compstruct.2019.111786

  138. Jia ZY, Zhang C, Wang FJ, Fu R, Chen C (2020) Multi-margin drill structure for improving hole quality and dimensional consistency in drilling Ti/CFRP stacks. J Mater Process Tech 276:116405. https://doi.org/10.1016/j.jmatprotec.2019.116405

  139. Kumar D, Gururaja S, Jawahir IS (2020) Machinability and surface integrity of adhesively bonded Ti/CFRP/Ti hybrid composite laminates under dry and cryogenic conditions. J Manuf Process 58:1075–1087. https://doi.org/10.1016/j.jmapro.2020.08.064

    Article  Google Scholar 

  140. Brinksmeier E, Janssen R (2002) Drilling of multi-layer composite materials consisting of carbon fiber reinforced plastics (CFRP), titanium and aluminum alloys. CIRP Ann 51(1):87–90. https://doi.org/10.1016/S0007-8506(07)61472-3

    Article  Google Scholar 

  141. Kayihan M, Karaguzel U, Bakkal M (2021) Experimental analysis on drilling of Al/Ti/CFRP hybrid composites. Mater Manuf Process 36(2):215–222. https://doi.org/10.1080/10426914.2020.1819545

    Article  Google Scholar 

  142. Zhang H, Dang J, An Q, Cai X, Chen M (2021) Study on the drilling performances of a newly developed CFRP/invar co-cured material. J Manuf Process 66:669–678. https://doi.org/10.1016/J.JMAPRO.2021.04.042

    Article  Google Scholar 

  143. Giasin K, Gorey G, Byrne C, Sinke J, Brousseau E (2019) Effect of machining parameters and cutting tool coating on hole quality in dry drilling of fibre metal laminates. Comp Struct. 212:159–174. https://doi.org/10.1016/J.COMPSTRUCT.2019.01.023

    Article  Google Scholar 

  144. Pawar OA, Gaikhe YS, Tewari A, Sundaram R, Joshi SS (2015) Analysis of hole quality in drilling GLARE fiber metal laminates. Comp Struct. 123:350–365. https://doi.org/10.1016/J.COMPSTRUCT.2014.12.056

    Article  Google Scholar 

  145. Giasin K, Ayvar-Soberanis S, Hodzic A (2015) An experimental study on drilling of unidirectional GLARE fibre metal laminates. Comp Struct. 133:794–808. https://doi.org/10.1016/J.COMPSTRUCT.2015.08.007

    Article  Google Scholar 

  146. Giasin K, Ayvar-Soberanis S, Hodzic A (2016) The effects of minimum quantity lubrication and cryogenic liquid nitrogen cooling on drilled hole quality in GLARE fibre metal laminates. Mater Des 89:996–1006. https://doi.org/10.1016/J.MATDES.2015.10.049

    Article  Google Scholar 

  147. Giasin K, Ayvar-Soberanis S (2017) An Investigation of burrs, chip formation, hole size, circularity and delamination during drilling operation of GLARE using ANOVA. Comp Struct. 159:745–760. https://doi.org/10.1016/J.COMPSTRUCT.2016.10.015

    Article  Google Scholar 

  148. Park SY, Choi WJ, Choi CH, Choi HS (2018) Effect of drilling parameters on hole quality and delamination of hybrid GLARE laminate. Comp Struct. 185:684–698. https://doi.org/10.1016/J.COMPSTRUCT.2017.11.073

    Article  Google Scholar 

  149. Ekici E, Motorcu AR, Yıldırım E (2021) An experimental study on hole quality and different delamination approaches in the drilling of CARALL, a new FML composite. FME Trans 49(4):950–961. https://doi.org/10.5937/fme2104950e

    Article  Google Scholar 

  150. David-Müzel S, Bonhin EP, Ribeiro MV, Botelho EC, Alves MCDS (2020) Furfuryl resin/CNT/carbon fiber drilling, using carbide drill coated with Balinit-Helica. Mater Manuf Process 35(10):1096–1103. https://doi.org/10.1080/10426914.2020.1765252

    Article  Google Scholar 

  151. Navaneethakrishnan G, Karthikeyan T, Parkunam N, Kumar BS (2022) Machinability analysis on glass fiber-reinforced boron nitride/epoxy hybrid nasnocomposites by using drilling operation. J Manuf Technol Res 14(1/2):95–110

    Google Scholar 

  152. Gajalakshmi K, Senthilkumar N, Palanikumar K (2022) Experimental analysis and optimization on machining of coated carbon fiber and nanoclay reinforced aluminum hybrid composites. Carbon Lett 1–19. https://doi.org/10.1007/s42823-021-00317-3

    Article  Google Scholar 

  153. Bahr B, Vodrahalli R (1999) Hole quality assurance by optimization of drilling parameters for carbon fiber composite material. SAE Trans 667–670. https://doi.org/10.4271/1999-01-2270

  154. Shunmugesh K, Panneerselvam K (2018) Multi-performance optimization of drilling carbon fiber reinforced polymer using Taguchi: membership function. T Indian I Metals 71(7):1615–1627. https://doi.org/10.1007/s12666-018-1296-x

    Article  Google Scholar 

  155. Suthar J, Teli SN, Murumkar A (2021) Drilling process improvement by Taguchi method. Mater Today Proc 47:2814–2819. https://doi.org/10.1016/J.MATPR.2021.03.533

    Article  Google Scholar 

  156. Shunmugesh K, Panneerselvam K (2017) Optimization of machining process parameters in drilling of CFRP using multi-objective taguchi technique, TOPSIS and RSA techniques. Polym Polym Compos 25(3):185–192. https://doi.org/10.1177/096739111702500301

    Article  Google Scholar 

  157. Shyha IS, Aspinwall DK, Soo SL, Bradley S (2009) Drill geometry and operating effects when cutting small diameter holes in CFRP. Int J Mach Tool Manuf 49(12–13):1008–1014. https://doi.org/10.1016/J.IJMACHTOOLS.2009.05.009

    Article  Google Scholar 

  158. Lazar MB, Xirouchakis P (2011) Experimental analysis of drilling fiber reinforced composites. Int J Mach Tool Manuf 51(12):937–946. https://doi.org/10.1016/J.IJMACHTOOLS.2011.08.009

    Article  Google Scholar 

  159. Durão LMP, Gonçalves D, Tavares JMR, De Albuquerque VHC, de Aguiar Vieira A. M. R, Baptista APM (2014) Delamination in carbon/epoxy plates drilling: tool and feed rate effect. Int J Mater Prod Tech 49(4):267–284. https://doi.org/10.1504/IJMPT.2014.064935

    Article  Google Scholar 

  160. Geier N, Szalay T (2017) Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP). Measurement 110:319–334. https://doi.org/10.1016/J.MEASUREMENT.2017.07.007

    Article  Google Scholar 

  161. Erkan Ö, Sur G, Nas E (2020) Investigation of surface morphology of drilled CFRP plates and optimization of cutting parameters. Surf Rev Lett 27(09):1950209. https://doi.org/10.1142/s0218625x19502093

    Article  Google Scholar 

  162. Krishnamoorthy A, Boopathy SR, Palanikumar K, Davim JP (2012) Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics. Measurement 45(5):1286–1296. https://doi.org/10.1016/j.measurement.2012.01.008

    Article  Google Scholar 

  163. Barik T, Jena SK, Gahir S, Pal K, Pattnaik SK (2021) Process parametric optimization in drilling of CFRP composites using GRA method. Mater Today Proc 39:1281–1286. https://doi.org/10.1016/J.MEASUREMENT.2012.01.008

    Article  Google Scholar 

  164. Tran QP, Le TDM, Huang SC (2021) Multi-objective optimization of carbon fiber–reinforced polymer drilling process based on grey fuzzy reasoning grade analysis. Int J Adv Manuf Tech 115(1):503–513. https://doi.org/10.1007/S00170-021-07224-X

    Article  Google Scholar 

  165. Abhishek K, Datta S, Mahapatra SS (2015) Optimization of thrust, torque, entry, and exist delamination factor during drilling of CFRP composites. Int J Adv Manuf Tech 76(1):401–416. https://doi.org/10.1007/S00170-014-6199-3

    Article  Google Scholar 

  166. Abhishek K, Datta S, Mahapatra SS (2016) Multi-objective optimization in drilling of CFRP (polyester) composites: Application of a fuzzy embedded harmony search (HS) algorithm. Measurement 77:222–239. https://doi.org/10.1016/J.MEASUREMENT.2015.09.015

    Article  Google Scholar 

  167. Vijayan D, Rajmohan T (2019) Modeling and evolutionary computation on drilling of carbon fiber-reinforced polymer nanocomposite: an integrated approach using RSM based PSO. J Braz Soc Mech Sci 41(10):1–17. https://doi.org/10.1007/s40430-019-1892-7

    Article  Google Scholar 

  168. Wang Q, Jia X (2020) Multi-objective optimization of CFRP drilling parameters with a hybrid method integrating the ANN, NSGA-II and fuzzy C-means. Comp Struct 235:111803. https://doi.org/10.1016/j.compstruct.2019.111803

  169. Wang Q, Jia X (2021) Optimization of cutting parameters for improving exit delamination, surface roughness, and production rate in drilling of CFRP composites. Int J Adv Manuf Tech 117(11):3487–3502. https://doi.org/10.1007/s00170-021-07918-2

    Article  Google Scholar 

  170. Soepangkat BOP, Norcahyo R, Effendi MK, Pramujati B (2020) Multi-response optimization of carbon fiber reinforced polymer (CFRP) drilling using back propagation neural network-particle swarm optimization (BPNN-PSO). Eng Sci Technol 23(3):700–713. https://doi.org/10.1016/j.jestch.2019.10.002

    Article  Google Scholar 

  171. Kumar J, Verma RK, Debnath K (2020) A new approach to control the delamination and thrust force during drilling of polymer nanocomposites reinforced by graphene oxide/carbon fiber. Comp Struct 253:112786. https://doi.org/10.1016/j.compstruct.2020.112786

  172. Upputuri HB, Nimmagadda VS, Duraisamy E (2020) Optimization of drilling parameters on carbon fiber reinforced polymer composites using fuzzy logic. Mater Today Proc 23:528–535. https://doi.org/10.1016/J.MATPR.2019.05.400

    Article  Google Scholar 

  173. Karnik SR, Gaitonde VN, Rubio JC, Correia AE, Abrão AM, Davim JP (2008) Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Mater Des 29(9):1768–1776. https://doi.org/10.1016/J.MATDES.2008.03.014

    Article  Google Scholar 

  174. Sankar BR, Umamaheswarrao P (2018) Multi objective optimization of CFRP composite drilling using ant colony algorithm. Mater Today Proc 5(2):4855–4860. https://doi.org/10.1016/j.matpr.2017.12.061

    Article  Google Scholar 

  175. Shunmugesh K, Kavan P (2017) Investigation and optimization of machining parameters in drilling of carbon fiber reinforced polymer (CFRP) composites. Pigm Resin Technol. https://doi.org/10.1108/PRT-03-2016-0029

    Article  Google Scholar 

  176. Tran QP, Le TDM, Huang SC (2020) Optimization of CFRP Drilling Process with Multi-Criteria Using TGRA. In 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), pp 334–337. IEEE. https://doi.org/10.1109/ECICE50847.2020.9301991

  177. Krishnaraj V, Prabukarthi A, Ramanathan A, Elanghovan N, Kumar MS, Zitoune R, Davim JP (2012) Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Compos Part B-Eng 43(4):1791–1799. https://doi.org/10.1016/J.COMPOSITESB.2012.01.007

    Article  Google Scholar 

  178. Tran QP, Nguyen VN, Huang SC (2020) Drilling process on CFRP: multi-criteria decision-making with entropy weight using grey-TOPSIS method. Appl Sci 10(20):7207. https://doi.org/10.3390/app10207207

    Article  Google Scholar 

  179. Ekici E, Motorcu AR, Uzun G (2021) Multi-objective optimization of process parameters for drilling fibermetal laminate using a hybrid GRA-PCA approach. FME Transactions 49(2):356–366. https://doi.org/10.5937/fme2102356E

    Article  Google Scholar 

  180. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell-US 1(1):33–57. https://doi.org/10.1007/s11721-007-0002-0

    Article  Google Scholar 

  181. Julong D (1989) Introduction to grey system theory. J Grey Syst-UK 1(1):1–24

    MATH  MathSciNet  Google Scholar 

  182. Bhushi U, Suthar J, Teli SN (2020) Performance analysis of metaheuristics optimization techniques for drilling process on CFRP composites. Mater Today Proc 28:1106–1114. https://doi.org/10.1016/j.matpr.2020.01.091

    Article  Google Scholar 

  183. Kumar A (2015) Experimental investigations on machining of CFRP composites: study of parametric influence and machining performance optimization. Dissertation, National Institute of Technology, India

  184. Suthar J, Bhushi U, Teli SN (2021) Drilling process improvement with genetic algorithm. Mater Today Proc 44:2735–2739. https://doi.org/10.1016/j.matpr.2020.12.698

    Article  Google Scholar 

  185. Shastri A, Nargundkar A, Kulkarni AJ (2021) Optimization of micro drilling of CFRP composites for aerospace applications. In Socio-Inspired Optimization Methods for Advanced Manufacturing Processes (pp. 111–118). Springer, Singapore

  186. Gao F, Tian X, Liu S, Li B (2012) The simulation on drilling of carbon fiber reinforced plastic composites. In the 2nd International Conference on Computer Application and System Modeling (pp. 1215–1218). https://doi.org/10.2991/ICCASM.2012.309

  187. Isbilir O, Ghassemieh E (2012) Finite element analysis of drilling of carbon fibre reinforced composites. Appl Compos Mater 19(3):637–656. https://doi.org/10.1007/s10443-011-9224-9

    Article  Google Scholar 

  188. Phadnis VA, Roy A, Silberschmidt VV (2012) Finite element analysis of drilling in carbon fiber reinforced polymer composites. J Phys Conf Ser. IOP Publishing. https://doi.org/10.1088/1742-6596/382/1/012014

  189. Phadnis VA, Makhdum F, Roy A, Silberschmidt VV (2013) Drilling in carbon/epoxy composites: experimental investigations and finite element implementation. Compos Part A-Appl S 47:41–51. https://doi.org/10.1016/J.COMPOSITESA.2012.11.020

    Article  Google Scholar 

  190. Al-Wandi S, Ding S, Mo J (2017) An approach to evaluate delamination factor when drilling carbon fiber-reinforced plastics using different drill geometries: experiment and finite element study. Int J Adv Manuf Tech 93(9):4043–4061. https://doi.org/10.1007/S00170-017-0880-2

    Article  Google Scholar 

  191. Phapale K, Ahire A, Singh R (2018) Experimental characterization and finite element modeling of critical thrust force in CFRP drilling. Mach Sci Technol 22(2):249–270. https://doi.org/10.1080/10910344.2017.1337134

    Article  Google Scholar 

  192. Wu M, Chen Y, Yu G, Gao Y, Tong M (2018) Investigations on the axial cutting force during drilling of carbon fiber composite material. Proc Inst Mech Eng B-J Eng 232(13):2430–2436. https://doi.org/10.1177/0954405417690569

    Article  Google Scholar 

  193. Sanusi H, Hussin MS, Yuzairi AR, Peng LH, Ahmad MFA (2020) Finite element analysis of drilling unidirectional CFRP in different ply orientation. J Mech Eng Sci 14(3):7258–7268. https://doi.org/10.15282/JMES.14.3.2020.25.0570

    Article  Google Scholar 

  194. Hale P, Ng EG (2021) 3D finite element model on drilling of CFRP with numerical optimization and experimental validation. Materials 14(5):1161. https://doi.org/10.3390/ma14051161

    Article  Google Scholar 

  195. Yan X, Zhang K, Cheng H, Luo B, Hou G (2019) Force coefficient prediction for drilling of UD-CFRP based on FEM simulation of orthogonal cutting. Int J Adv Manuf Technol 104(9):3695–3716. https://doi.org/10.1007/S00170-019-04048-8

    Article  Google Scholar 

  196. Usui S, Wadell J, Marusich T (2014) Finite element modeling of carbon fiber composite orthogonal cutting and drilling. Procedia CIRP 14:211–216

    Article  Google Scholar 

  197. Yuan S, Zhang C, Amin M, Fan H, Liu M (2015) Development of a cutting force prediction model based on brittle fracture for carbon fiber reinforced polymers for rotary ultrasonic drilling. Int J Adv Manuf Tech 81(5):1223–1231. https://doi.org/10.1007/S00170-015-7269-X

    Article  Google Scholar 

  198. Ning FD, Cong WL, Pei ZJ, Treadwell C (2016) Rotary ultrasonic machining of CFRP: a comparison with grinding. Ultrasonics 66:125–132. https://doi.org/10.1016/j.ultras.2015.11.002

    Article  Google Scholar 

  199. Kumaran ST, Ko TJ, Li C, Yu Z, Uthayakumar M (2017) Rotary ultrasonic machining of woven CFRP composite in a cryogenic environment. J Alloy Compd 698:984–993. https://doi.org/10.1016/J.JALLCOM.2016.12.275

    Article  Google Scholar 

  200. Geng D, Teng Y, Liu Y, Shao Z, Jiang X, Zhang D (2019) Experimental study on drilling load and hole quality during rotary ultrasonic helical machining of small-diameter CFRP holes. J Mater Process Tech 270:195–205. https://doi.org/10.1016/J.JMATPROTEC.2019.03.001

    Article  Google Scholar 

  201. Wu CQ, Gao GL, Li HN, Luo H (2019) Effects of machining conditions on the hole wall delamination in both conventional and ultrasonic-assisted CFRP drilling. Int J Adv Manuf Tech 104(5):2301–2315. https://doi.org/10.1007/S00170-019-04052-Y

    Article  Google Scholar 

  202. Voss R, Henerichs M, Kuster F (2016) Comparison of conventional drilling and orbital drilling in machining carbon fibre reinforced plastics (CFRP). CIRP Ann 65(1):137–140. https://doi.org/10.1016/J.CIRP.2016.04.001

    Article  Google Scholar 

  203. Boccarusso L, De Fazio D, Durante M, Langella A, Minutolo FMC (2019) CFRPs drilling: comparison among holes produced by different drilling strategies. Procedia CIRP 79:325–330. https://doi.org/10.1016/J.PROCIR.2019.02.075

    Article  Google Scholar 

  204. Wang Q, Wu Y, Bitou T, Nomura M, Fujii T (2018) Proposal of a tilted helical milling technique for high quality hole drilling of CFRP: kinetic analysis of hole formation and material removal. Int J Adv Manuf Tech 94(9):4221–4235. https://doi.org/10.1007/S00170-017-1106-3

    Article  Google Scholar 

  205. Haruna AY, Wang GD (2021) An experimental comparative analysis of twist drilling, helical milling and pilot hole machining for large diameters in CFRPs. Open Access Libr J 8(3):1–19. https://doi.org/10.4236/OALIB.1107205

    Article  Google Scholar 

  206. Kumar R, Agrawal PK, Singh I (2018) Fabrication of micro holes in CFRP laminates using EDM. J Manuf Process 31:859–866. https://doi.org/10.1016/J.JMAPRO.2018.01.011

    Article  Google Scholar 

  207. Khanna N, Pusavec F, Agrawal C, Krolczyk GM (2020) Measurement and evaluation of hole attributes for drilling CFRP composites using an indigenously developed cryogenic machining facility. Measurement 154:107504. https://doi.org/10.1016/j.measurement.2020.107504

  208. Kannan S, Pervaiz S (2020) Surface morphology of inclined CFRP holes when machined under cryogenic environment. Mater Manuf Process 35(11):1228–1239. https://doi.org/10.1080/10426914.2020.1762208

    Article  Google Scholar 

  209. Dalle Mura M, Dini G (2021) Drilling carbon fiber reinforced plastics with pre-cooling treatment by cryogenic fluid. J Manuf Process 68:23–31. https://doi.org/10.1016/J.JMAPRO.2021.05.030

    Article  Google Scholar 

  210. Iqbal A, Zhao G , Zaini J, Jamil M, Suhaimi H (2021) CFRP drilling under throttle and evaporative cryogenic cooling and micro-lubrication. Comp Struct 113916. https://doi.org/10.1016/J.COMPSTRUCT.2021.113916

  211. Ouyang W, Jiao J, Xu Z, Xia H, Sheng L (2021) Experimental study on CFRP drilling with the picosecond laser “double rotation” cutting technique. Opt Laser Technol 142(4):107238. https://doi.org/10.1016/J.OPTLASTEC.2021.107238

    Article  Google Scholar 

  212. Kumar R, Kumar A, Singh I (2018) Electric discharge drilling of micro holes in CFRP laminates. J Mater Process Tech 259:150–158. https://doi.org/10.1016/J.JMATPROTEC.2018.04.031

    Article  Google Scholar 

Download references

Funding

This research is supported by Hebei 333 Talent Project under Grant No. A202101024 and the PhD Research Foundation of NCIAE under Grant No. BKY201501. North China Institute of Aerospace Engineering under Grant No. YKY202103. Postgraduate Innovation Funding Project of Hebei under Grant No. CXZZSS2021158.

Author information

Authors and Affiliations

Authors

Contributions

Weiyu Zhu and Hongge Fu: writing original draft. Fei Li: editing the original draft and revising. Xu Ji: writing guidance. Yuqing Li: guiding framework of paper and checking. Fan Bai: check original draft.

Corresponding author

Correspondence to Xu Ji.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Fu, H., Li, F. et al. Optimization of CFRP drilling process: a review. Int J Adv Manuf Technol 123, 1403–1432 (2022). https://doi.org/10.1007/s00170-022-10112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10112-7

Keywords

Navigation