Skip to main content

Advertisement

Log in

A digital twin–driven method for online quality control in process industry

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

To ensure the stability of product quality and production continuity, quality control is drawing increasing attention from the process industry. However, current methods cannot meet requirements with regard to time series data, high coupling parameters, delayed data acquisition, and ambiguous operation control. A digital twin–driven (DTD) method is proposed for real-time monitoring, evaluation, and optimization of process parameters that are strongly related to product quality. Based on a process simulation model, production status information and quality related data are obtained. Combined with an improved genetic algorithm (GA), a time sequential prediction model of bidirectional gated recurrent unit (bi-GRU) with attention mechanism (AM) is built to flexibly allocate parameter weights, accurately predict product quality, timely evaluate technical process, and rapidly generate optimized control plans. A typical case study and relevant field tests from the process industry are presented to prove the effectiveness of the method. Results indicate that the proposed method clearly outperforms its competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

The datasets and technical materials generated and analyzed during the current study are not publicly available due to corporate security and we cannot disclose it.

Code availability

Not applicable.

References

  1. Qian F, Zhong W, Du WL (2017) Fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Engineering 3(2):154–160. https://doi.org/10.1016/J.Eng.2017.02.011

    Article  Google Scholar 

  2. Du SC, Xu R, Li L (2018) Modeling and analysis of multiproduct multistage manufacturing system for quality improvement. IEEE Trans Syst Man Cybern Syst 48(5):801–820. https://doi.org/10.1109/TSMC.2016.2614766

    Article  Google Scholar 

  3. Zhang RD, Lu JY, Qu HY, Gao F (2014) State space model predictive fault-tolerant control for batch processes with partial actuator failure. J Process Contr 24(5):613–620. https://doi.org/10.1016/j.jprocont.2014.03.004

    Article  Google Scholar 

  4. He YL, Ma YC, Xu Y, Zhu Q (2020) Fault diagnosis using novel class-specific distributed monitoring weighted naive Bayes: applications to process industry. Ind Eng Chem Res 59(20):9593–9603. https://doi.org/10.1021/acs.iecr.0c01071

    Article  Google Scholar 

  5. Kim KS, Ko JW (2005) Real-time risk monitoring system for chemical plants. Korean J Chem Eng 22(1):26–31. https://doi.org/10.1007/Bf02701457

    Article  Google Scholar 

  6. Mendibil X, Llanos I, Urreta H, Quintana I (2017) In process quality control on micro inje-ction moulding: the role of sensor location. Int J Adv Manuf Tech 89(9–12):3429–3438. https://doi.org/10.1007/s00170-016-9300-2

    Article  Google Scholar 

  7. Cao J, He Y, Zhu QX (2021) An ontology-based procedure knowledge framework for the process industry. Can J Chem Eng 99(2):530–542. https://doi.org/10.1002/cjce.23873

    Article  Google Scholar 

  8. Zhang D, Gao XW (2021) Soft sensor of flotation froth grade classification based on hybrid deep neural network. Int J Prod Res 4794–4810. https://doi.org/10.1080/00207543.2021.1894366

  9. Park SH, Park C, Kim J, Baek J (2017) Principal curve-based monitoring chart for anomaly detection of non-linear process signals. Int J Adv Manuf Tech 90(9–12):3523–3531. https://doi.org/10.1007/s00170-016-9624-y

    Article  Google Scholar 

  10. Stavridis J, Papacharalampopoulos A, Stavropoulos P (2018) Quality assessment in laser welding: a critical review. Int J Adv Manuf Tech 94(5–8):1825–1847. https://doi.org/10.1007/s00170-017-0461-4

    Article  Google Scholar 

  11. Assis AJ, Maciel R (2000) Soft sensors development for on-line bioreactor state estimation. Comput Chem Eng 24(2–7):1099–1103. https://doi.org/10.1016/S0098-1354(00)00489-0

    Article  Google Scholar 

  12. Yuan X, Ge Z, Song Z, Wang Y, Yang C, Zhang H (2017) Soft sensor modeling of nonlinear industrial processes based on weighted probabilistic projection regression. IEEE T Instrum Meas 66(4):837–845. https://doi.org/10.1109/Tim.2017.2658158

    Article  Google Scholar 

  13. Penaloza EAG, Oliveira VA, Cruvinel PE (2021) Using soft sensors as a basis of an innovative architecture for operation planning and quality evaluation in agricultural sprayers. Sensors-Basel 21(4):1269. https://doi.org/10.3390/s21041269

    Article  Google Scholar 

  14. Kneale C, Brown S (2018) Small moving window calibration models for soft sensing proc-esses with limited history. Chemometr Intell Lab 183:36–46. https://doi.org/10.1016/j.chemolab.2018.10.007

    Article  Google Scholar 

  15. Fu Y, Yang W, Xu O, Zhou L, Wang J (2017) Soft sensor modelling by time difference, recursive partial least squares and adaptive model updating. Meas Sci Technol 28(4):045101. https://doi.org/10.1088/1361-6501/aa57e2

    Article  Google Scholar 

  16. Pisa I, Santin I, Vicario J, Morell A, Vilanova R (2019) ANN-based soft sensor to predict effluent violations in wastewater treatment plants. Sensors-Basel 19(6):1280. https://doi.org/10.3390/s19061280

    Article  Google Scholar 

  17. Jana AK, Banerjee S (2018) Neuro estimator-based inferential extended generic model cont-rol of a reactive distillation column. Chem Eng Res Des 130:284–294. https://doi.org/10.1016/j.cherd.2017.12.041

    Article  Google Scholar 

  18. Kadlec P, Gabrys B, Strandt S (2009) Data-driven soft sensors in the process industry. Comput Chem Eng 33(4):795–814. https://doi.org/10.1016/j.compchemeng.2008.12.012

    Article  Google Scholar 

  19. Liu X, Jin J, Wu W, Herz F (2020) A novel support vector machine ensemble model for estimation of free lime content in cement clinkers. ISA T 99:479–487. https://doi.org/10.1016/j.isatra.2019.09.003

    Article  Google Scholar 

  20. Wang T, Wang X, Ma R, Li X, Hu X, Chan F, Ruan J (2020) Random forest-Bayesian optimization for product quality prediction with large-scale dimensions in process industrial cyber-physical systems. IEEE Internet Things 7(9):8641–8653. https://doi.org/10.1109/Jiot.2020.2992811

    Article  Google Scholar 

  21. Li YG, Gui WH, Yang CH, Xie Y (2013) Soft sensor and expert control for blending and digestion process in alumina metallurgical industry. J Process Contr 23(7):1012–1021. https://doi.org/10.1016/j.jprocont.2013.06.002

    Article  Google Scholar 

  22. Aslam M, Bantan RAR, Khan N (2019) Design of X-bar control chart using multiple dep-endent state sampling under indeterminacy environment. IEEE Access 7:152233–152242. https://doi.org/10.1109/Access.2019.2947598

    Article  Google Scholar 

  23. Chen S, Yu J (2019) Deep recurrent neural network-based residual control chart for autocorrelated processes. Qual Reliab Eng Int 35(8):2687–2708. https://doi.org/10.1002/qre.2551

    Article  Google Scholar 

  24. Keshavarz M, Asadzadeh S, Niaki STA (2019) Controlling autocorrelated data in multistage manufacturing processes with an application to textile industry. Qual Reliab Eng Int 35(7):2314–2326. https://doi.org/10.1002/qre.2512

    Article  Google Scholar 

  25. Lee CKH, Choy KL, Ho GTS, Lam CHY (2016) A slippery genetic algorithm-based process mining system for achieving better quality assurance in the garment industry. Expert Syst Appl 46(236–248). https://doi.org/10.1016/j.eswa.2015.10.035

  26. Kramar D, Cica D (2017) Predictive model and optimization of processing parameters for plastic injection moulding. Mater Tehnol 51(4):597–602. https://doi.org/10.17222/mit.2016.129

  27. Grieves MW (2005) Product lifecycle management: the new paradigm for enterprises. Int J Prod Dev 2(1–2):71–84. https://doi.org/10.1504/IJPD.2005.006669

    Article  Google Scholar 

  28. Tao F, Zhang L, Nee AYC, Pickl SW (2016) Editorial for the special issue on big data and cloud technology for manufacturing. Int J Adv Manuf Tech 84(1–4):1–3. https://doi.org/10.1007/s00170-016-8495-6

    Article  Google Scholar 

  29. Zhang X, Ming X, Liu Z, Yin D, Chen Z, Chang Y (2019) A reference framework and overall planning of industrial artificial intelligence (I-AI) for new application scenarios. Int J Adv Manuf Tech 101(9–12):2367–2389. https://doi.org/10.1007/s00170-018-3106-3

    Article  Google Scholar 

  30. Ye YX, Hu TL, Zhang CR, Luo W (2018) Design and development of a CNC machining process knowledge base using cloud technology. Int J Adv Manuf Tech 94(9–12):3413–3425. https://doi.org/10.1007/s00170-016-9338-1

    Article  Google Scholar 

  31. Balderas D, Ortiz A, Méndez E, Ponce P, Molina A (2021) Empowering Digital Twin for Industry 4.0 using metaheuristic optimization algorithms:case study PCB drilling optimization. Int J Adv Manuf Tech 113(5):1295–1306. https://doi.org/10.1007/s00170-021-06649-8

  32. Tao F, Zhang M (2017) Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access 5:20418–20427. https://doi.org/10.1109/Access.2017.2756069

    Article  Google Scholar 

  33. Tao F, Cheng JF, Qi QL, Zhang M, Zhang H, Sui FY (2018) Digital twin-driven product design, manufacturing and service with big data. Int J Adv Manuf Tech 94(9–12):3563–3576. https://doi.org/10.1007/s00170-017-0233-1

    Article  Google Scholar 

  34. Li CZ, Mahadevan S, Ling Y, Choze S, Wang LP (2017) Dynamic Bayesian network for aircraft wing health monitoring digital twin. AIAA J 55(3):930–941. https://doi.org/10.2514/1.J055201

    Article  Google Scholar 

  35. Tao F, Zhang M, Liu YS, Nee A (2018) Digital twin driven prognostics and health mana-gement for complex equipment. Cirp Ann-Manuf Techn 67(1):169–172. https://doi.org/10.1016/j.cirp.2018.04.055

    Article  Google Scholar 

  36. Iglesias D, Bunting P, Esquembri S, Hollocombe J, Silburn S, Vitton-Mea L, Balboa I, Huber A, Matthews GF, Riccardo V, Rimini F, Valcarcel D (2017) Digital twin applications for the JET divertor. Fusion Eng Des 125:71–76. https://doi.org/10.1016/j.fusengdes.2017.10.012

  37. Liu JF, Zhou HG, Tian GZ, Liu XJ, Jing X (2019) Digital twin-based process reuse and evaluation approach for smart process planning. Int J Adv Manuf Tech 100(5–8):1619–1634. https://doi.org/10.1007/s00170-018-2748-5

    Article  Google Scholar 

  38. Soderberg R, Warmefjord K, Carlson JS, Lindkvist L (2017) Toward a digital twin for real-time geometry assurance in individualized production. Cirp Ann-Manuf Techn 66(1):137–140. https://doi.org/10.1016/j.cirp.2017.04.038

    Article  Google Scholar 

  39. Zhuang CB, Liu JH, Xiong H (2018) Digital twin-based smart production management and control framework for the complex product assembly shop-floor. Int J Adv Manuf Tech 96(1–4):1149–1163. https://doi.org/10.1007/s00170-018-1617-6

    Article  Google Scholar 

  40. Wang X, Wang L (2019) Digital twin-based WEEE recycling, recovery and remanufacturing in the background of Industry 4.0. Int J Prod Res 57(12):3892–3902. https://doi.org/10.1080/00207543.2018.1497819

  41. Zheng Y, Yang S, Cheng HC (2019) An application framework of digital twin and its case study. J Amb Intel Hum Comp 10(3):1141–1153. https://doi.org/10.1007/s12652-018-0911-3

    Article  Google Scholar 

  42. He R, Chen G, Dong C, Sun S, Shen XY (2019) Data-driven digital twin technology for optimized control in process systems. ISA T 95:221–234. https://doi.org/10.1016/j.isatra.2019.05.011

    Article  Google Scholar 

  43. Lee J, Noh S, Kim H, Kang Y (2018) Implementation of cyber-physical production systems for quality prediction and operation control in metal casting. Sensors-Basel 18(5):1428. https://doi.org/10.3390/s18051428

    Article  Google Scholar 

  44. Dli M, Puchkov A, Meshalkin V, Abdeev I, Saitov R, Abdeev R (2020) Energy and resource efficiency in apatite-nepheline ore waste processing using the digital twin approach. Energies 13(21):5829. https://doi.org/10.3390/en13215829

    Article  Google Scholar 

  45. Prathima BA, Sudha PN, Suresh P (2020) Shop floor to cloud connect for live monitoring the production data of CNC machines. Int J Comput Integ M 33(2):142–158. https://doi.org/10.1080/0951192x.2020.1718762

    Article  Google Scholar 

  46. Kannan K, Arunachalam N (2019) A digital twin for grinding wheel:an information sharing platform for sustainable grinding process. J Manuf Sci E-T Asme 141(2):021015. https://doi.org/10.1115/1.4042076

    Article  Google Scholar 

  47. Cheng Y, Zhang Y, Ji P, Xu W, Zhou Z, Tao F (2018) Cyber-physical integration for mo-ving digital factories forward towards smart manufacturing: a survey. Int J Adv Manuf Tech 97(1–4):1209–1221. https://doi.org/10.1007/s00170-018-2001-2

    Article  Google Scholar 

  48. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

  49. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  50. Cho K, Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. Computer Science. https://arxiv.org/abs/1406.1078

  51. Liu G, Guo J (2019) Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 337:325–338. https://doi.org/10.1016/j.neucom.2019.01.078

    Article  Google Scholar 

  52. Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recogn 33(9):1455–1465. https://doi.org/10.1016/S0031-3203(99)00137-5

    Article  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (No. 51975521).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Yangjian Ji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Ji, Y. A digital twin–driven method for online quality control in process industry. Int J Adv Manuf Technol 119, 3045–3064 (2022). https://doi.org/10.1007/s00170-021-08369-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08369-5

Keywords

Navigation