Skip to main content
Log in

Assessing the dwell time effect during friction stir spot welding of aluminum polyethylene multilayer sheets by experiments and numerical simulations

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Friction Stir Spot Welding (FSSW) is successfully applied for the joining of sandwich sheets with a polymeric core at varying dwell times. The mechanical performance of the joint is evaluated at various loading conditions. The joint performance of the sandwich sheet is significantly affected by the dwell time in the lap shear test and peel test, while a poor relationship exists between the dwell time and joint performance in the cross-tension test and uniaxial tension test. On the joint cross-section, macrostructure, microstructure, microhardness, and temperature are evaluated. A logical relation is established between these indexes and dwell time. A finite element model is developed to visualize and understand the material flow in the FSSW process of the sandwich sheet and to justify the accommodation of plasticized material into the core layer. The failure modes are also investigated via experiments and simulations, which matched with each other. The failure modes mainly depend upon the hook geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Availability of data and material (data transparency)

Provided in the supplementary material.

Code availability (software application or custom code)

NA

References

  1. Tanco JS, Nielsen CV, Chergui A, Zhang W, Bay N (2015) Weld nugget formation in resistance spot welding of new lightweight sandwich material. Int J Adv Manuf Technol 80:1137–1147. https://doi.org/10.1007/s00170-015-7108-0

    Article  Google Scholar 

  2. Pickin CG, Young K, Tuersley I (2007) Joining of lightweight sandwich sheets to aluminium using self-pierce riveting. Mater Des 28:2361–2365. https://doi.org/10.1016/j.matdes.2006.08.003

    Article  Google Scholar 

  3. Ozlati A, Movahedi M, Tamizi M, Tartifzadeh Z, Alipour S (2019) An alternative additive manufacturing-based joining method to make metal/polymer hybrid structures. J Manuf Process 45:217–226. https://doi.org/10.1016/j.jmapro.2019.07.002

    Article  Google Scholar 

  4. Mazda (2003) Mazda develops world’s first aluminum joining technology using friction heat. In: Maz. Backnumber. https://www2.mazda.com/en/publicity/release/archive/2003/200302/0227e.html

  5. Yan Y, Shen Y, Lei H, Zhuang J (2019) Influence of welding parameters and tool geometry on the morphology and mechanical performance of ABS friction stir spot welds. Int J Adv Manuf Technol 103:2319–2330. https://doi.org/10.1007/s00170-019-03703-4

    Article  Google Scholar 

  6. Pabandi HK, Movahedi M, Kokabi AH (2017) A new refill friction spot welding process for aluminum/polymer composite hybrid structures. Compos Struct 174:59–69. https://doi.org/10.1016/j.compstruct.2017.04.053

    Article  Google Scholar 

  7. Uematsu Y, Tokaji K (2009) Comparison of fatigue behaviour between resistance spot and friction stir spot welded aluminium alloy sheets. Sci Technol Weld Join 14:62–71. https://doi.org/10.1179/136217108X338908

    Article  Google Scholar 

  8. de la Parte MP, Azofra JC, Fals HDC, Roca AS, Orozco MCS, Macías EJ (2019) A new way to predict the mechanical properties of friction stir spot welding for Al-Cu joints by energy analysis of the vibration signals. Int J Adv Manuf Technol 105:1823–1834. https://doi.org/10.1007/s00170-019-04396-5

    Article  Google Scholar 

  9. Colmenero AN, Orozco MS, Macías EJ, Fernández JB, Muro JCSD, Fals HC, Roca AS (2019) Optimization of friction stir spot welding process parameters for Al-Cu dissimilar joints using the energy of the vibration signals. Int J Adv Manuf Technol 100:2795–2802. https://doi.org/10.1007/s00170-018-2779-y

    Article  Google Scholar 

  10. Rana PK, Narayanan RG, Kailas SV (2018) Effect of rotational speed on friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets. J Mater Process Technol 252:511–523. https://doi.org/10.1016/j.jmatprotec.2017.10.016

    Article  Google Scholar 

  11. Rana PK, Narayanan RG, Kailas SV (2019) Friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets at varying plunge speeds. Thin-Walled Struct 138:415–429. https://doi.org/10.1016/j.tws.2019.02.016

    Article  Google Scholar 

  12. Rana PK, Narayanan RG, Kailas S V. (2019) Influence of tool plunge depth during friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets. In: Dixit, S U., Narayanan GR (ed) Strengthening and joining by plastic deformation. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore, pp. 95–121

  13. Raikoty H, Ahmed I, Talia GE (2005) High speed friction stir welding: a computational and experimental study. Proc ASME Summer Heat Transf Conf 3:431–436. https://doi.org/10.1115/HT2005-72833

    Article  Google Scholar 

  14. Genna S, Leone C, Tagliaferri V (2017) Characterization of laser beam transmission through a High Density Polyethylene (HDPE) plate. Opt Laser Technol 88:61–67. https://doi.org/10.1016/j.optlastec.2016.08.010

    Article  Google Scholar 

  15. Chu Q, Yang XW, Li WY, Vairis A, Wang WB (2018) Numerical analysis of material flow in the probeless friction stir spot welding based on Coupled Eulerian-Lagrangian approach. J Manuf Process 36:181–187. https://doi.org/10.1016/j.jmapro.2018.10.013

    Article  Google Scholar 

  16. Aval HJ, Serajzadeh S, Kokabi AH (2011) Theoretical and experimental investigation into friction stir welding of AA 5086. Int J Adv Manuf Technol 52:531–544. https://doi.org/10.1007/s00170-010-2752-x

    Article  Google Scholar 

  17. Zhu XK, Chao YJ (2002) Effects of temperature-dependent material properties on welding simulation. Comput Struct 80:967–976. https://doi.org/10.1016/S0045-7949(02)00040-8

    Article  Google Scholar 

  18. Bentouhami A (2018) Experimental and numerical analysis of behavior of honeycomb sandwiches panels subjected to impact. Ferhat Abbas University, Setif

  19. Khalajmasoumi M, Koloor SSR, Arefnia A, Ibrahim IS, Yatim JM (2012) Hyperelastic analysis of high density polyethylene under monotonic compressive load. Appl Mech Mater 229–231:309–313. https://doi.org/10.4028/www.scientific.net/AMM.229-231.309

    Article  Google Scholar 

  20. Zhang C, Moore ID (1997) Nonlinear mechanical response of high density polyethylene. Part I: experimental investigation and model evaluation. Polym Eng Sci 37:404–413. https://doi.org/10.1002/pen.11683

    Article  Google Scholar 

  21. dos Santos WN, de Sousa JA, Gregorio R (2013) Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Polym Test 32:987–994. https://doi.org/10.1016/j.polymertesting.2013.05.007

    Article  Google Scholar 

  22. Ramin L, Assadi MHN, Sahajwalla V (2014) High-density polyethylene degradation into low molecular weight gases at 1823K: an atomistic simulation. J Anal Appl Pyrolysis 110:318–321. https://doi.org/10.1016/j.jaap.2014.09.022

    Article  Google Scholar 

  23. Levanger H (2012) Simulating ductile fracture in steel using the finite element method: comparison of two models for describing local instability due to ductile fracture. University of Oslo Norway

  24. Awang M (2007) Simulation of friction stir spot welding (FSSW) process: study of friction phenomena. College of Engineering and Mineral Resources at West Virginia University

  25. Kiran R, Khandelwal K (2014) A triaxiality and lode parameter dependent ductile fracture criterion. Eng Fract Mech 128:121–138. https://doi.org/10.1016/j.engfracmech.2014.07.010

    Article  Google Scholar 

  26. Danijela Z, Aleksandar S, Aleksandar G (2013) Crack growth analysis in friction stir welded joint zones using extended finite element method. Struct Integr Life 13:179–188

    Google Scholar 

  27. Lin Y-C, Liu J, Lin B-Y et al (2012) Effects of process parameters on strength of Mg alloy AZ61 friction stir spot welds. Mater Des 35:350–357. https://doi.org/10.1016/j.matdes.2011.08.050

    Article  Google Scholar 

  28. Yin YH, Sun N, North TH, Hu SS (2010) Influence of tool design on mechanical properties of AZ31 friction stir spot welds. Sci Technol Weld Join 15:81–86. https://doi.org/10.1179/136217109X12489665059384

    Article  Google Scholar 

  29. Badarinarayan H, Shi Y, Li X, Okamoto K (2009) Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int J Mach Tools Manuf 49:814–823. https://doi.org/10.1016/j.ijmachtools.2009.06.001

    Article  Google Scholar 

  30. Rana PK, Narayanan RG, Kailas S V. (2018) Thermal and mechanical response in FSSW of sandwich sheets at different dwell periods. In: proceedings of National Conference on Advanced Materials, Manufacturing and Metrology (NCAMMM – 2018). Durgapur, pp 235–240

  31. Li G, Zhou L, Zhou W, Song X, Huang Y (2019) Influence of dwell time on microstructure evolution and mechanical properties of dissimilar friction stir spot welded aluminum–copper metals. J Mater Res Technol 8:2613–2624. https://doi.org/10.1016/j.jmrt.2019.02.015

    Article  Google Scholar 

  32. Bakavos D, Prangnell PB (2009) Effect of reduced or zero pin length and anvil insulation on friction stir spot welding thin gauge 6111 automotive sheet. Sci Technol Weld Join 14:443–456. https://doi.org/10.1179/136217109X427494

    Article  Google Scholar 

  33. Capiati NJ, Porter RS (1975) The concept of one polymer composites modelled with high density polyethylene. J Mater Sci 10:1671–1677. https://doi.org/10.1007/BF00554928

    Article  Google Scholar 

  34. Sakai T, Jonas JJ (1984) Overview no. 35 dynamic recrystallization: mechanical and microstructural considerations. Acta Metall 32:189–209. https://doi.org/10.1016/0001-6160(84)90049-X

    Article  Google Scholar 

  35. Tutar M, Aydin H, Yuce C, Yavuz N, Bayram A (2014) The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array. Mater Des 63:789–797. https://doi.org/10.1016/j.matdes.2014.07.003

    Article  Google Scholar 

  36. Farmanbar N, Mousavizade SM, Ezatpour HR (2019) Achieving special mechanical properties with considering dwell time of AA5052 sheets welded by a simple novel friction stir spot welding. Mar Struct 65:197–214. https://doi.org/10.1016/j.marstruc.2019.01.010

    Article  Google Scholar 

  37. Kumar A, Arora KS, Gupta RK, Harmain GA (2019) Investigation on interface morphology and joint configuration of dissimilar sheet thickness FSSW of marine grade Al alloy. J Brazilian Soc Mech Sci Eng 41:381. https://doi.org/10.1007/s40430-019-1882-9

    Article  Google Scholar 

  38. Zhang Z, Yang X, Zhang J, Zhou G, Xu X, Zou B (2011) Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Mater Des 32:4461–4470. https://doi.org/10.1016/j.matdes.2011.03.058

    Article  Google Scholar 

  39. Tran V-X, Pan J, Pan T (2009) Effects of processing time on strengths and failure modes of dissimilar spot friction welds between aluminum 5754-O and 7075-T6 sheets. J Mater Process Technol 209:3724–3739. https://doi.org/10.1016/j.jmatprotec.2008.08.028

    Article  Google Scholar 

  40. Tozaki Y, Uematsu Y, Tokaji K (2007) Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. Int J Mach Tools Manuf 47:2230–2236. https://doi.org/10.1016/j.ijmachtools.2007.07.005

    Article  Google Scholar 

Download references

Acknowledgments

The authors express sincere thanks to the Central Instrumental Facility of IIT Guwahati for permitting us to conduct experiments on the UTM facility. No funding agency supported the present work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Pritam K Rana, R. Ganesh Narayanan, Satish V Kailas.

Methodology and investigation: Pritam K Rana, R. Ganesh Narayanan, Satish V Kailas.

Writing—original draft preparation and visualization—Pritam K Rana; supervision: R Ganesh Narayanan.

Corresponding author

Correspondence to R. Ganesh Narayanan.

Ethics declarations

Additional declarations for articles in life science journals that report the results of studies involving humans and/or animals

NA

Ethics approval

NA

Consent to participate

NA

Consent for publication

All the authors have consent to publish.

Conflicts of interest/competing interests

NIL

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, P.K., Narayanan, R.G. & Kailas, S.V. Assessing the dwell time effect during friction stir spot welding of aluminum polyethylene multilayer sheets by experiments and numerical simulations. Int J Adv Manuf Technol 114, 1953–1973 (2021). https://doi.org/10.1007/s00170-021-06910-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06910-0

Keywords

Navigation