Skip to main content
Log in

Mechanical, wear, fatigue, and water absorption behavior of proso millet husk derived biosilica reinforced nylon 6–6 composite thick plates for friction stir welding process

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This research presents a comprehensive investigation into the mechanical, tribological, fatigue, and micro-structural properties of 3D printed Nylon 6–6 composites reinforced with biosilica derived from proso millet husk. The biosilica nanoparticles were prepared from proso millet husks via thermo-chemical process and reinforce into the nylon polymer via single screw extruder. The composites, designated from A to E, were printed with varying concentrations of biosilica, ranging from 0 to 4 wt.% reinforced nylon filaments with 50% infill ratio. The printed composites are further subjected to testing in accordance to ASTM standards and the results are evaluated further. According to the results, the tensile and yield strength of composite reveals a progressive improvement in mechanical properties with increasing biosilica content, attributed to efficient load transfer and enhanced rigidity imparted by biosilica particles. Similarly, izod impact toughness and hardness demonstrate similar trends, indicates increased toughness and surface durability with higher biosilica content. The fatigue life cycle assessment of composites is significant. The addition of biosilica improved the strength of nylon composite even it printed by 50 infill ratio. Moreover, the scanning electron microscopy (SEM) analysis reveals distinct microstructural features, including biosilica agglomerations, unfilled voids, and uniform biosilica dispersion, offering insights into the material's internal morphology and reinforcing mechanisms. Additionally, the controlled water absorption and improved wear resistance observed in biosilica-reinforced composites highlight their potential for applications requiring moisture resistance and reduced friction. Overall, the synergistic combination of nylon 6–6 and biosilica presents promising opportunities for the development of high-performance composite materials with enhanced mechanical properties and durability, suitable for diverse engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data within the manuscript are available. No more additional data is available.

References

  1. Alshammari BA, Alsuhybani MS, Almushaikeh AM, Alotaibi BM, Alenad AM, Alqahtani NB, Alharbi AG (2021) Polymers 13(15):2474. https://doi.org/10.3390/polym13152474

    Article  Google Scholar 

  2. Nuriel H, Kozlovich N, Feldman Y, Marom G (2000) Compos A Appl Sci Manuf 31(1):69–78. https://doi.org/10.1016/S1359-835X(99)00050-0

    Article  Google Scholar 

  3. Pai CC, Jeng RJ, Grossman SJ, Huang JC (1989) Adv Polym Technol 9(2):157–163. https://doi.org/10.1002/adv.1989.060090206

    Article  Google Scholar 

  4. Kabir SF, Mathur K, Seyam AFM (2020) Compos Struct 232:111476. https://doi.org/10.1016/j.compstruct.2019.111476

    Article  Google Scholar 

  5. Zhang, Z., Gkartzou, E., Jestin, S., Semitekolos, D., Pappas, P. N., Li, X., ... & Dong, H. (2022). Polymers, 14(3), 470. https://doi.org/10.3390/polym14030470

  6. Kumar R, Singh R, Singh M, Kumar P (2022) J Thermoplast Compos Mater 35(6):799–825. https://doi.org/10.1177/0892705720925119

    Article  Google Scholar 

  7. Kumar R, Singh R, Ahuja IPS, Fortunato A (2020) Compos Struct 253:112772. https://doi.org/10.1016/j.compstruct.2020.112772

    Article  Google Scholar 

  8. Kumar R, Singh R, Ahuja IPS (2021) Proc Inst Mech Eng Part C: J Mech Eng Sci 235(10):1878–1890. https://doi.org/10.1177/0954406219848465

    Article  Google Scholar 

  9. Salamati M, Soltanpour M, Fazli A (2020) Int J Adv Manuf Technol 106:4023–4081. https://doi.org/10.1007/s00170-019-04845-1

    Article  Google Scholar 

  10. Alshahrani, H., Vincent Rethnam, A.P. Fibers Polym (2024). https://doi.org/10.1007/s12221-024-00475-x

  11. Khan, M.K.A., Alshahrani, H. & Arun Prakash, V. Biomass Conv Bioref (2023). https://doi.org/10.1007/s13399-023-05196-4

  12. Alshahrani, H., VR, A.P. J Mater Sci: Mater Electron 34, 1988 (2023). https://doi.org/10.1007/s10854-023-11418-2

  13. Prakash VRA, MostefaBourchak, Alshahrani H, Juhany KA. Int J Biol Macromol 253 (2023):127068

  14. Krishnamoorthy N, Nagabhooshanam N, Rao PKV, Verma R, Kumar DS, Sankar GA, ... Mohanavel V (2023) Biomass Conv Bioref 1–8

  15. Vijayaraj S, Vijayarajan K (2023) Biomass Conv Bioref 1–11

  16. Terzioğlu P, Yücel S, Kuş Ç (2019) Asia-Pac J Chem Eng 14(1):e2262. https://doi.org/10.1002/apj.2262

    Article  Google Scholar 

  17. Özarslan AC, Elalmis YB, Yücel S (2021) J Non-Cryst Solids 561:120755. https://doi.org/10.1016/j.jnoncrysol.2021.120755

    Article  Google Scholar 

  18. Devisetti R, Yadahally SN, Bhattacharya S (2014) LWT-Food Sci Technol 59(2):889–895. https://doi.org/10.1016/j.lwt.2014.07.003

    Article  Google Scholar 

  19. Battegazzore D, Bocchini S, Alongi J, Frache A (2014) RSC Adv 4(97):54703–54712. https://doi.org/10.1039/C4RA05991C

    Article  Google Scholar 

  20. Yohannan A, Vincent S, Divakaran N, PottikadavathVenugopal AK, Patra S, Ashish K, Mohanty S Polym Compos

  21. Singh, S., Prakash, C., & Gupta, M. K. (2019). In Materials forming, machining and post processing (pp. 75–91). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-18854-2_3

  22. Bagheri A, Parast MSA, Kami A, Azadi M, Asghari V (2022) Eur J Mech A-Solid 96:104713. https://doi.org/10.1016/j.euromechsol.2022.104713

    Article  Google Scholar 

  23. Embirsh HSA, Stajčić I, Gržetić J, Mladenović IO, Anđelković B, Marinković A, Vuksanović MM (2023) Polymers 15(18):3756

    Article  Google Scholar 

  24. Prakash VRA, Xavier JF, Ramesh G, Maridurai T, Kumar KS, Raj RBS (2022) Biomass Conv Bioref 12(12):5451–5461

  25. Khan MK, Faisal M, Prakash VR (2024) Polym Bull 1–19

  26. Alshahrani H, Arun Prakash VR Fibers Polym (2024):1–11

  27. Ramu S, Senthilkumar N, Deepanraj B (2024) Biomass Conv Bioref 1–10

  28. Venkatesh B, Gandhimathi G, Nagabhooshanam N, Raghu Babu G, SD DB, Kishore KL, Vijay KM, Soudagar MEM (2024) Biomass Conv Bioref 1–10

  29. Alshahrani H, Prakash VA (2022) J Clean Prod 374:133931

    Article  Google Scholar 

  30. Colom X, Carrasco F, Pagès P, Cañavate J (2003) Compos Sci Technol 63(2):161–169. https://doi.org/10.1016/s0266-3538(02)00248-8

    Article  Google Scholar 

  31. Sudhir Kumar Saw, Chandan (2009) Data, thermomechanical properties of jute/bagasse hybrid fibre reinforced epoxy thermoset composites. Bio Res

  32. Low IM, Somers J, Kho HS, Davies IJ, Latella BA (2009) Compos Interfaces 16(7–9):659–669. https://doi.org/10.1163/092764409x12477417562210

    Article  Google Scholar 

  33. Alhuthali AM, Low I-M (2015) Polym Eng Sci 55(12):2685–2697. https://doi.org/10.1002/pen.23617

    Article  Google Scholar 

  34. ArunPrakash VR, Jayaseelan V, Mothilal T et al (2020) SILICON 12:2533–2544. https://doi.org/10.1007/s12633-019-00347-7

    Article  Google Scholar 

  35. Bharath Kumar T, Haseebuddin MR, Raghavendra N, Vishnu Mahesh KR (2018) Mater Today: Proc 5(10):22675–22686. https://doi.org/10.1016/j.matpr.2018.06.644

    Article  Google Scholar 

  36. Arun Prakash VR, Xavier JF, Ramesh G et al (2022) Biomass Conv Bioref 12:5451–5461. https://doi.org/10.1007/s13399-020-00938-0

    Article  Google Scholar 

  37. Rajadurai A (2016) Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite. Appl Surf Sci 384:99–106

    Article  Google Scholar 

  38. Prakash VRA, Bourchak M, Alshahrani H et al (2023). Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-04736-2

    Article  Google Scholar 

  39. Thiyagu, T.T., J.V, S.P.K., P, G. et al. Biomass Conv Bioref. 13, 11841–11851 (2023). https://doi.org/10.1007/s13399-021-01941-9

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rajkumar P and Natarajan U: full research; Kumaravadivel A: testing support.

Corresponding author

Correspondence to P. Rajkumar.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, P., Natarajan, U. & Kumaravadivel, A. Mechanical, wear, fatigue, and water absorption behavior of proso millet husk derived biosilica reinforced nylon 6–6 composite thick plates for friction stir welding process. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05691-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05691-2

Keywords

Navigation