Skip to main content

Advertisement

Log in

Molecular cloning and genetic mapping of perennial ryegrass casein protein kinase 2 α-subunit genes

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The α-subunit of the casein protein kinase CK2 has been implicated in both light-regulated and circadian rhythm-controlled plant gene expression, including control of the flowering time. Two putative CK2α genes of perennial ryegrass (Lolium perenne L.) have been obtained from a cDNA library constructed with mRNA isolated from cold-acclimated crown tissue. The genomic organisation of the two genes was determined by Southern hybridisation analysis. Primer designs to the Lpck2a-1 and Lpck2a-2 cDNA sequences permitted the amplification of genomic products containing large intron sequences. Amplicon sequence analysis detected single nucleotide polymorphisms (SNPs) within the p150/112 reference mapping population. Validated SNPs, within diagnostic restriction enzyme sites, were used to design cleaved amplified polymorphic sequence (CAPS) assays. The Lpck2a-1 CAPS marker was assigned to perennial ryegrass linkage group (LG) 4 and the Lpck2a-2 CAPS marker was assigned to LG2. The location of the Lpck2a-1 gene locus supports the previous conclusion of conserved synteny between perennial ryegrass LG4, the Triticeae homoeologous group 5L chromosomes and the corresponding segment of rice chromosome 3. Allelic variation at the Lpck2a-1 and Lpck2a-2 gene loci was correlated with phenotypic variation for heading date and winter survival, respectively. SNP polymorphism may be used for the further study of the role of CK2α genes in the initiation of reproductive development and winter hardiness in grasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA (2003) A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet 108:25–40

    Article  CAS  PubMed  Google Scholar 

  • Armstead IP, Turner LB, King IP, Cairns AJ, Humphreys MO (2002) Comparison and integration of genetic maps generated from F2 and BC1-type mapping populations in perennial ryegrass. Plant Breed 121:501–507

    Article  CAS  Google Scholar 

  • Armstead IP, Turner LB, Farrell M, Skøt, Gomez P, Montoya T, Donnison IS, King IP, Humphreys MO (2004) Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet 108:822–828

    Article  CAS  PubMed  Google Scholar 

  • Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999) A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99:445–452

    Article  CAS  PubMed  Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665

    Article  CAS  Google Scholar 

  • Cogan NOI, Smith KF, Yamada T, Francki MG, Vecchies AC, Jones ES, Spangenberg GC, Forster JW (2005) QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:364–380

    Article  CAS  PubMed  Google Scholar 

  • Daniel X, Gugano S, Tobin EM (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci USA 101:3292–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97:968–975

    Article  CAS  Google Scholar 

  • Dumsday JL, Smith KF, Forster JW, Jones ES (2003) SSR-based genetic linkage analysis of resistance to crown rust (Puccinia coronata Corda f. sp. lolii) in perennial ryegrass (Lolium perenne L.). Plant Pathol 52:628–637

    Article  Google Scholar 

  • Dunford RP, Yano M, Kurata N, Sasaki T, Huestis G, Rocheford T, Laurie D (2002) Comparative mapping of the barley Ppd-H1 photoperiod response gene region, which lies close to a junction between two rice linkage segments. Genetics 161:825–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    Article  CAS  Google Scholar 

  • Faville M, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally-associated molecular marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:12–32

    Article  CAS  PubMed  Google Scholar 

  • Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ’Tremois’ (spring) barley map. Theor Appl Genet 108:670–680

    Article  CAS  PubMed  Google Scholar 

  • Forster JW, Jones ES, Kölliker R, Drayton MC, Dumsday J, Dupal MP, Guthridge KM, Mahoney NL, van Zijll de Jong E, Smith KF (2001) Development and implementation of molecular markers for forage crop improvement. In: Spangenberg G (ed) Molecular breeding of forage crops. Kluwer Academic Press, Dordrecht, pp 101–133

    Chapter  Google Scholar 

  • Forster JW, Jones ES, Batley J, Smith KF (2004) Molecular marker-based genetic analysis of pasture and turf grasses. In: Hopkins A, Wang Z-Y, Mian R, Sledge M, Barker RE (eds) Molecular breeding of forage and turf. Kluwer Academic Press, Dordrecht, pp 197–238

    Chapter  Google Scholar 

  • Humphreys MO, Eagles CF (1988) Assessment of perennial ryegrass (Lolium perenne L.) for breeding. I. Freezing tolerance. Euphytica 38:75–84

    Article  Google Scholar 

  • Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plan Biol 6:113–120

    Article  CAS  Google Scholar 

  • Jensen LB, Andersen JR, Frei U, Xing Y, Taylor C, Holm PB, Lübberstedt T (2005) QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110:527–536

    Article  CAS  PubMed  Google Scholar 

  • Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet C, Forster JW (2002a) An enhanced molecular marker-based map of perennial ryegrass (Lolium perenne L.) reveals comparative relationships with other Poaceae species. Genome 45:282–295

    Article  CAS  PubMed  Google Scholar 

  • Jones ES, Dupal MD, Dumsday JL, Hughes LJ, Forster JW (2002b) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Miura H, Sawada S (1999) Comparative mapping of the wheat Vrn-A1 region with the rice Hd-6 region. Genome 42:204–209

    Article  CAS  Google Scholar 

  • Kato K, Kidou S, Miura H, Sawada S (2002) Molecular cloning of the wheat CK2α gene and detection of its linkage with Vrn-A1 on chromosome 5A. Theor Appl Genet 104:1071–1077

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Law CN, Sutka J, Worland AJ (1978) A genetic study of day-length response in wheat. Heredity 41:185–191

    Article  Google Scholar 

  • Lee Y, Lloyd AM, Roux SJ (1999) Antisense expression of the CK2 α-subunit gene in Arabidopsis. Effects on light-regulated gene expression and plant growth. Plant Physiol 119:989–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limin AE, Fowler DB (2002) Developmental traits affecting low-temperature tolerance response in near-isogenic lines for the vernalization locus Vrn-A1 in wheat (Triticum aestivum L. em Thell.). Ann Bot 89:579–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litchfield DW, Lüscher B (1993) Casein kinase II in signal transduction and cell cycle regulation. Mol Cell Biochem 127/128:187–199

    Article  CAS  Google Scholar 

  • Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Kamada H, Shimozaki K (1993) Cloning and characterization of two cDNAs encoding casein kinase II catalytic subunits in Arabidopsis thaliana. Plant Mol Biol 21:279–289

    Article  CAS  PubMed  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14(Suppl):S111–S130

    Google Scholar 

  • Murray MG, Thompson WF (1980) The isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donoghue LS, Wang Z, Roeder M, Kneen B, Leggett M, Sorrells ME, Tanksley SD (1992) An RFLP-based linkage map of oats based on a cross between two diploid taxa (Avena atlantica × A. hirtula). Genome 35:765–771

    Article  Google Scholar 

  • Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Bedö Z (1994) Genetic analysis of the components of winter-hardiness in barley (Hordeum vulgare L.). Theor Appl Genet 89:900–910

    CAS  PubMed  Google Scholar 

  • Peracchia G, Jensen AB, Culiàñez-Macià FA, Grosset J, Goday A, Issinger O-G, Pagès M (1999) Characterization, subcellular localization and nuclear targeting of casein kinase 2 from Zea mays. Plant Mol Biol 40:199–211

    Article  CAS  PubMed  Google Scholar 

  • Pinna LA (1990) Casein kinase 2: an ‘eminence grise’ in cellular regulation? Biochim Biophys Acta 1054:267–284

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Echalier B, Friebe B, Gill BS (2003) Molecular characterisation of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55

    CAS  PubMed  Google Scholar 

  • Riera M, Peracchia G, Nadal E de, Ariño J, Pagès (2001) Maize protein kinase CK2: regulation and functionality of three β regulatory subunits. Plant J 25:365–374

    Article  CAS  PubMed  Google Scholar 

  • Sim S, Chang T, Curley J, Warnke SE, Barker R, Jung G (2005) Chromosomal rearrangements differentiating the ryegrass genome from the Triticeae, oat and rice genomes using common heterologous RFLP probes. Theor Appl Genet 110:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuazon PT, Traugh JA (1991) Casein kinases I and II—multipotential serine protein kinases: structure, function, and regulation. Adv Sec Mess Phos Res 23:123–164

    CAS  Google Scholar 

  • Wilkins PW, Humphreys MO (2003) Progress in breeding perennial forage grasses for temperate agriculture. J Agr Sci 140:129–150

    Article  CAS  Google Scholar 

  • Yamada T, Jones ES, Nomura T, Hisano H, Shimamoto Y, Smith KF, Hayward MD, Forster JW (2004) QTL analysis of morphological, developmental and winter hardiness-associated traits in perennial ryegrass (Lolium perenne L.). Crop Sci 44:925–935

    Article  CAS  Google Scholar 

  • Yamamoto T, Lin H, Sasaki T, Yano M (2000) Identification of heading data quantitative locus Hd6 characterization of its epistatic interaction with Hd2 in rice using advanced back-cross progeny. Genetics 154:885–891

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by Grants-in-Aid for Scientific Research (Nos. 14360160 and 17380163 to T.Y.) from the Ministry of Education, Science, Sports and Culture, Japan.The research in Australia was supported by Primary Industries Research Victoria and the Molecular Plant Breeding Cooperative Research Centre. The authors thank Prof. Michael Hayward (Rhydgoch Genetics, Aberystwyth, UK) and Drs. Aidyn Mouradov and Ulrik John for careful critical reading of the manuscript. The scientific advice and support of Prof. G. Spangenberg is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yamada.

Additional information

Communicated by P. Langridge

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinozuka, H., Hisano, H., Ponting, R.C. et al. Molecular cloning and genetic mapping of perennial ryegrass casein protein kinase 2 α-subunit genes. Theor Appl Genet 112, 167–177 (2005). https://doi.org/10.1007/s00122-005-0119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0119-8

Keywords

Navigation