Skip to main content

Advertisement

Log in

The rise of targeting chimeras (TACs): next-generation medicines that preempt cellular events

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Traditional targets and modalities that have provided rich substrates for medicine design and decades of productive industrial and academic research are not the primary drug discovery engines of the future. There is a steady shift in the target and modality landscape. Novel modalities such as protein degradation are an intense and hot area of research. The explosion of proximity induced ubiquitination of targets and proteasome or lysosome mediated degradation by expropriating E3 ligases (PROTACS, LYTACS) has inspired a number of other proximity induced post-translational modifications such as de-ubiquitination (DUBTACS), phosphorylation (PHICS), de-phosphorylation (PHORCS), acetylation (AceTAGs) to name a few. This review article of emerging TACs (targeting chimeras) provides a sampling of some of the chimeric molecules that preempt these cellular events and highlight opportunities and challenges for prospective medicine design and scientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walsh C, Garneau-Tsodikova S, Gatto GJ. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl. 2005;44:7342–72.

    Article  CAS  PubMed  Google Scholar 

  2. Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 2017;16:101–14.

    Article  CAS  PubMed  Google Scholar 

  3. Ottis P, Crews C. Proteolysis-targeting chimeras: induced protein degradation as a therapeutic strategy. ACS Chem Biol. 2017;12:892–8.

    Article  CAS  PubMed  Google Scholar 

  4. Bekes M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21:181–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li X, Pu W, Zheng Q, Ai M, Chen S, Peng Y. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol Cancer. 2022;21:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao L, Zhao J, Zhong K, Tong A, Jia D. Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther. 2022;7:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, Jaime-Figueroa S, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol. 2018;25:78–87.e5.

    Article  CAS  PubMed  Google Scholar 

  8. Schapira M, Calabrese MF, Bullock AN, Crews CM. Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov. 2019;18:949–63.

    Article  CAS  PubMed  Google Scholar 

  9. Kim C, Wang XD, Liu Z, Zha S, Yu Y. Targeting scaffolding functions of enzymes using PROTAC approaches. Biochemistry. 2023;62:561–3.

    Article  CAS  PubMed  Google Scholar 

  10. Imaide S, Riching KM, Makukhin N, Vetma V, Whitworth C, Hughes SJ, et al. Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nat Chem Biol. 2021;17:1157–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kiessling LL, Gestwicki JE, Strong LE. Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed. 2006;45:2348–68.

    Article  CAS  Google Scholar 

  12. Zengerle M, Chan K-H, Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem Biol. 2015;10:1770–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Demars KM, Yang C, Castro-Rivera CI, Candelario-Jalil E. Selective degradation of BET proteins with dBET1, a proteolysis-targeting chimera, potently reduces pro-inflammatory responses in lipopolysaccharide-activated microglia. Biochem. Biophys. Res Commun. 2018;497:410–5.

    Article  CAS  PubMed  Google Scholar 

  14. Lu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol. 2015;22:755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Douglass EF Jr., Miller CJ, Sparer G, Shapiro H, Spiegel DA. A comprehensive mathematical model for three-body binding equilibria. J Am Chem Soc. 2013;135:6092–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Henning NJ, Boike L, Spradlin JN, Ward CC, Liu G, Zhang E, et al. Deubiquitinase-targeting chimeras for targeted protein stabilization. Nat Chem Biol. 2022;18:412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu J, Yu X, Chen H, Kaniskan HU, Xie L, Chen X, et al. TF-DUBTACs stabilize tumor suppressor transcription factors. J Am Chem Soc. 2022;144:12934–41.

    Article  CAS  PubMed  Google Scholar 

  18. Yamazoe S, Tom J, Fu Y, Wu W, Zeng L, Sun C, et al. Heterobifunctional molecules induce dephosphorylation of kinases-A proof of concept study. J Med Chem. 2020;63:2807–13.

    Article  CAS  PubMed  Google Scholar 

  19. Hu Z, Chen PH, Li W, Douglas T, Hines J, Liu Y, et al. Targeted dephosphorylation of tau by phosphorylation targeting chimeras (PhosTACs) as a therapeutic modality. J Am Chem Soc. 2023. https://doi.org/10.1021/jacs.2c11706. Online ahead of print.

  20. Zheng J, Tian N, Liu F, Zhang Y, Su J, Gao Y, et al. A novel dephosphorylation targeting chimera selectively promoting tau removal in tauopathies. Signal Transduct Target Ther. 2021;6:269–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen P-H, Hu Z, An E, Okeke I, Zheng S, Luo X, et al. Modulation of phosphoprotein activity by phosphorylation targeting chimeras (PhosTACs). ACS Chem Biol. 2021;16:2808–15.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Q, Wu X, Zhang H, Wu Q, Fu M, Hua L, et al. Protein phosphatase 5‐recruiting chimeras for accelerating apoptosis-signal-regulated kinase 1 dephosphorylation with antiproliferative activity. J Am Chem Soc. 2023;145:1118–28.

    Article  CAS  PubMed  Google Scholar 

  23. Testa A, Hughes SJ, Lucas X, Wright JE, Ciulli A. Structure-based DesignofaMacrocyclic PROTAC. Angew Chem Int Ed. 2020;59:1727–34.

    Article  CAS  Google Scholar 

  24. Bond MJ, Chu L, Nalawansha DA, Li K, Crews CM. Targeted degradation of oncogenic KRASG12C by VHL-recruiting PROTACs. ACS Cent Sci. 2020;6:1367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buhimschi AD, Armstrong HA, Toure M, Jaime-Figueroa S, Chen TL, Lehman AM, et al. Targeting the C481S ibrutinib-resistance mutation in bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry. 2018;57:3564–75.

    Article  CAS  PubMed  Google Scholar 

  26. Sachini U, Siriwardena DNPMG, Shoba VM, Lai S, Shi M, Wu P, Chaudhary SK, Schreiber SL, Choudhary A. Phosphorylation-inducing chimeric small molecules. J Am Chem Soc. 2020;142:14052–7.

    Article  Google Scholar 

  27. Pergu R, Shoba VM, Chaudhary SK, Godage DNPM, Deb A, Singha S, et al. Development and applications of chimera platforms for tyrosine phosphorylation. bioRxiv. 2023. https://doi.org/10.1101/2023.03.05.531183.

  28. Wang WW, Chen LY, Wozniak JM, Jadhav AM, Anderson H, Malone TE, et al. Targeted protein acetylation in cells using heterobifunctional molecules. J Am Chem Soc. 2021;143:16700–8.

    Article  CAS  PubMed  Google Scholar 

  29. Raina K, Forbes CD, Stronk R, Rappi JP, Eastman KJ, Gerritz SW, et al. Regulated induced proximity targeting chimeras (RIPTACs): a novel heterobifunctional small molecule therapeutic strategy for killing cancer cells selectively. bioRxiv. 2023. https://doi.org/10.1101/2023.01.01.522436.

  30. Yu X, Eastman KJ, Raina K, Jones KM, Forbes CD, Hundt A, et al. Prostate cancer RIPTAC™ therapeutics demonstrate activity in preclinical models of Enzalutamide-resistant prostate cancer. In: Proceedings of the American Association for Cancer Research. 2023;83(7_Supplement):1629. https://doi.org/10.1158/1538-7445.AM2023-1629.

  31. Raina K, Eastman KJ, Yu X, Forbes CD, Jones KM, Mousseau JJ, et al. An oral androgen receptor RIPTAC for prostate cancer. J Clin Oncol. 2023;41:184

    Article  Google Scholar 

  32. Gerritz SW, Kayser-Bricker KJ, Neklesa T, Puleo DE, Mousseau JJ, Zaware N, et al., inventorsHeterobifunctional compounds and their use in treating disease. Patent WO/2023/059609. 2023.

  33. Gerritz SW., Kayser-Bricker KJ., Eastman KJ., Neklesa T, Raina KS, inventorsHeterobifunctional compounds and their use in treating disease. Patent WO/2023/059583. 2023.

  34. Xue G, Wang K, Zhou D, Zhong H, Pan Z. Light-induced protein degradation with photocaged PROTACs. J Am Chem Soc. 2019;141:18370–4.

    Article  CAS  PubMed  Google Scholar 

  35. Jin YH, Lu MC, Wang Y, Shan WX, Wang XY, You QD, et al. Azo-PROTAC: novel light-controlled small-molecule tool for protein knockdown. J Med Chem. 2020;63:4644–54.

    Article  CAS  PubMed  Google Scholar 

  36. Reynders M, Trauner D. Optical control of targeted protein degradation. Cell Chem Biol. 2021;28:969–86.

    Article  CAS  PubMed  Google Scholar 

  37. Naro Y, Darrah K, Deiters A. Optical control of small molecule-induced protein degradation. J Am Chem Soc. 2020;142:2193–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Banik SM, Pedram K, Wisnovsky S, Ahn G, Riley NM, Bertozzi CR. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature. 2020;584:291–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramadas B, Kumar Pain P, Manna D. LYTACs: an emerging tool for the degradation of non-cytosolic proteins. ChemMedChem. 2021;16:2951–3.

    Article  CAS  PubMed  Google Scholar 

  40. Mondal B, Dutta T, Padhy A, Das S, Sen Gupta S. Lysosome-targeting strategy using polypeptides and chimeric molecules. ACS Omega. 2022;7:5–16.

    Article  CAS  PubMed  Google Scholar 

  41. Hong D, Zhou B, Zhang B, Ren H, Zhu L, Zheng G, et al. Recent advances in the development of EGFR degraders: PROTACs and LYTACs. Eur J Med Chem. 2022;239:114533.

    Article  CAS  PubMed  Google Scholar 

  42. Ahn G, Banik SM, Miller CL, Riley NM, Cochran JR, Bertozzi CR. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat Chem Biol. 2021;17:937–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu Y, Lin B, Lu Y, Li L, Deng K, Zhang S, et al. Aptamer-LYTACs for targeted degradation of extracellular and membrane. Proteins Angew Chem Int Ed Engl. 2023;62:e202218106.

    Article  CAS  PubMed  Google Scholar 

  44. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takahashi D, Moriyama J, Nakamura T, Miki E, Takahashi E, Sato A, et al. AUTACs: cargo-specific degraders using selective autophagy. Mol Cell. 2019;76:797–810 e10.

    Article  CAS  PubMed  Google Scholar 

  46. Pei J, Pan X, Wang A, Shuai W, Bu F, Tang P, et al. Developing potent LC3-targeting AUTAC tools for protein degradation with selective autophagy. Chem Commun. 2021;57:13194–7.

    Article  CAS  Google Scholar 

  47. Ji CH, Kim HY, Lee MJ, Heo AJ, Park DY, Lim S, et al. The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system. Nat Commun. 2022;13:904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Z, Zhu C, Ding Y, Fei Y, Lu B. ATTEC: a potential new approach to target proteinopathies. Autophagy. 2020;16:185–7.

    Article  CAS  PubMed  Google Scholar 

  49. Buckley DL, Raina K, Darricarrere N, Hines J, Gustafson JL, Smith IE, et al. HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem Biol. 2015;10:1831–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tovell H, Testa A, Maniaci C, Zhou H, Prescott AR, Macartney T, et al. Rapid and reversible knockdown of endogenously tagged endosomal proteins via an optimized HaloPROTAC degrader. ACS Chem Biol. 2019;14:882–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bond AG, Craigon C, Chan KH, Testa A, Karapetsas A, Fasimoye R, et al. Development of BromoTag: a “bump-and-hole”-PROTAC system to induce potent, rapid, and selective degradation of tagged target proteins. J Med Chem. 2021;64:15477–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Simpson LM, Macartney TJ, Nardin A, Fulcher LJ, Roth S, Testa A, et al. Inducible degradation of target proteins through a tractable affinity-directed protein missile system. Cell Chem Biol. 2020;27:1164–80 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen W, Younis MH, Zhao Z, Cai W. Recent biomedical advances enabled by HaloTag technology. Biocell. 2022;46:1789–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grohmann C, Magtoto CM, Walker JR, Chua NK, Gabrielyan A, Hall M, et al. Development of NanoLuc-targeting protein degraders and a universal reporter system to benchmark tag-targeted degradation platforms. Nat Commun. 2022;13:2073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang H, Han Y, Yang Y, Lin F, Li K, Kong L, et al. Covalently engineered nanobody chimeras for targeted membrane protein degradation. J Am Chem Soc. 2021;143:16377–82.

    Article  CAS  PubMed  Google Scholar 

  56. Kim H, Park J, Kim JM. Targeted protein degradation to overcome resistance in cancer therapies: PROTAC and N-Degron pathway. Biomedicines. 2022;10:9.

    Article  Google Scholar 

  57. Costales MG, Matsumoto Y, Velagapudi SP, Disney MD. Small molecule targeted recruitment of a nuclease to RNA. J Am Chem Soc. 2018;140:6741–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gagliardi M, Ashizawa AT. The challenges and strategies of antisense oligonucleotide drug delivery. Biomedicines. 2021;9:4.

    Article  Google Scholar 

  59. Velagapudi SP, Cameron MD, Haga CL, Rosenberg LH, Lafitte M, Duckett DR, et al. Design of a small molecule against an oncogenic noncoding RNA. Proc Natl Acad Sci USA. 2016;113:5898–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meyer SM, Tanaka T, Zanon PRA, Baisden JT, Abegg D, Yang X, et al. DNA-encoded library screening to inform design of a ribonuclease targeting chimera (RiboTAC). J Am Chem Soc. 2022;144:21096–102.

    Article  CAS  PubMed  Google Scholar 

  61. Ishida T, Ciulli A. E3 ligase ligands for PROTACs: how they were found and how to discover new ones. SLAS Discov. 2021;26:484–502.

    Article  CAS  PubMed  Google Scholar 

  62. Ghidini A, Clery A, Halloy F, Allain FHT, Hall J. RNA-PROTACs: degraders of RNA-binding. Proteins Angew Chem Int Ed Engl. 2021;60:3163–9.

    Article  CAS  PubMed  Google Scholar 

  63. Eckstein F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev. 2000;10:117–21.

    Article  CAS  PubMed  Google Scholar 

  64. Egli M, Manoharan M. Re-engineering RNA molecules into therapeutic agents. Acc Chem Res. 2019;52:1036–47.

    Article  CAS  PubMed  Google Scholar 

  65. Samarasinghe KTG, Jaime-Figueroa S, Burgess M, Nalawansha DA, Dai K, Hu Z, et al. Targeted degradation of transcription factors by TRAFTACs: TRAnscription factor targeting chimeras. Cell Chem Biol. 2021;28:648–61 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Samarasinghe KTG, An E, Genuth MA, Chu L, Holley SA, Crews CM. OligoTRAFTACs: a generalizable method for transcription factor degradation. RSC Chem Biol. 2022;3:1144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lim S, Khoo R, Peh KM, Teo J, Chang SC, Ng S, et al. bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA). Proc Natl Acad Sci USA. 2020;117:5791–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao L, Ren TH, Wang DD. Clinical pharmacology considerations in biologics development. Acta Pharm Sin. 2012;33:1339–47.

    Article  CAS  Google Scholar 

  69. Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov. 2019;18:19–40.

    Article  CAS  PubMed  Google Scholar 

  70. Krah S, Kolmar H, Becker S, Zielonka S. Engineering IgG-like bispecific antibodies-an overview. Antibodies. 2018;7:3.

    Article  Google Scholar 

  71. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18:345–62.

    Article  CAS  PubMed  Google Scholar 

  73. Gadd MS, Testa A, Lucas X, Chan K-H, Chen W, Lamont DJ, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol. 2017;13:514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Riching KM, Mahan S, Corona CR, Mcdougall M, Vasta JD, Robers MB, et al. Quantitative live-cell kinetic degradation and mechanistic profiling of PROTAC mode of action. ACS Chem Biol. 2018;13:2758–70.

    Article  CAS  PubMed  Google Scholar 

  75. Roy MJ, Winkler S, Hughes SJ, Whitworth C, Galant M, Farnaby W, et al. SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate. ACS Chem Biol. 2019;14:361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Weiss DR, Bortolato A, Sun Y, Cai X, Lai C, Guo S, et al. On ternary complex stability in protein degradation: in silico molecular glue binding affinity calculations. J Chem Inf Model. 2023;63:2382–92.

    Article  CAS  PubMed  Google Scholar 

  77. Zorba A, Nguyen C, Xu Y, Starr J, Borzilleri K, Smith J, et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci USA. 2018;115:E7285–E92.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nowak RP, Deangelo SL, Buckley D, He Z, Donovan KA, An J, et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat Chem Biol. 2018;14:706–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Drummond ML, Williams CI. In silico modeling of PROTAC-mediated ternary complexes: validation and application. J Chem Inf Model. 2019;59:1634–44.

    Article  CAS  PubMed  Google Scholar 

  80. Drummond ML, Henry A, Li H, Williams CI. Improved accuracy for modeling PROTAC-mediated ternary complex formation and targeted protein degradation via new in silico methodologies. J Chem Inf Model. 2020;60:5234–54.

    Article  CAS  PubMed  Google Scholar 

  81. Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT. Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model. 2010;50:572–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bai N, Miller SA, Andrianov GV, Yates M, Kirubakaran P, Karanicolas J. Rationalizing PROTAC-mediated ternary complex formation using Rosetta. J Chem Inf Model. 2021;61:1368–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bai N, Riching KM, Makaju A, Wu H, Acker TM, Ou SC, et al. Modeling the CRL4A ligase complex to predict target protein ubiquitination induced by cereblon-recruiting PROTACs. J Biol Chem. 2022;298:101653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zaidman D, Prilusky J, London N. PRosettaC: Rosetta based modeling of PROTAC mediated ternary complexes. J Chem Inf Model. 2020;60:4894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Duhovny D, Nussinov R, Wolfson HJ. Efficient unbound docking of rigid molecules. Lect Notes Comput Sc. 2002;2452:185–200.

    Article  Google Scholar 

  86. Rodriguez-Granillo A. Computational workflows for bifunctional degrader design. In: 3rd annual targeted protein degradation summit. October 13–15, 2020. Hanson Wade Group.

  87. Dan Sindhikara MW, Gkeka P, Güssregen S, Tiwari G, Hessler G, Yapici E, et al. Automated design of macrocycles for therapeutic applications: from small molecules to peptides and proteins. J Med Chem. 2020;63:12100–15.

    Article  CAS  PubMed  Google Scholar 

  88. Eron SJ, Huang H, Agafonov RV, Fitzgerald ME, Patel J, Michael RE, et al. Structural characterization of degrader-induced ternary complexes using hydrogen-deuterium exchange mass spectrometry and computational modeling: implications for structure-based design. ACS Chem Biol. 2021;16:2228–43.

    Article  CAS  PubMed  Google Scholar 

  89. Dixon T, Macpherson D, Mostofian B, Dauzhenka T, Lotz S, Mcgee D, et al. Predicting the structural basis of targeted protein degradation by integrating molecular dynamics simulations with structural mass spectrometry. Nat Commun. 2022;13:5884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Farnaby W, Koegl M, Roy MJ, Whitworth C, Diers E, Trainor N, et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat Chem Biol. 2019;15:672–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dragovich PS, Pillow TH, Blake RA, Sadowsky JD, Adaligil E, Adhikari P, et al. Antibody-mediated delivery of chimeric BRD4 degraders. part 2: improvement of in vitro antiproliferation activity and in vivo antitumor efficacy. J Med Chem. 2021;64:2576–607.

    Article  CAS  PubMed  Google Scholar 

  92. Kofink C, Trainor N, Mair B, Wohrle S, Wurm M, Mischerikow N, et al. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. Nat Commun. 2022;13:5969.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Schiemer J, Horst R, Meng Y, Montgomery JI, Xu Y, Feng X, et al. Snapshots and ensembles of BTK and cIAP1 protein degrader ternary complexes. Nat Chem Biol. 2021;17:152–60.

    Article  CAS  PubMed  Google Scholar 

  94. Chung CW, Dai H, Fernandez E, Tinworth CP, Churcher I, Cryan J, et al. Structural insights into PROTAC-mediated degradation of Bcl-xL. ACS Chem Biol. 2020;15:2316–23.

    Article  CAS  PubMed  Google Scholar 

  95. Yu X, Li D, Kottur J, Shen Y, Kim HS, Park KS, et al. A selective WDR5 degrader inhibits acute myeloid leukemia in patient-derived mouse models. Sci Transl Med. 2021;13:eabj1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Law RP, Nunes J, Chung CW, Bantscheff M, Buda K, Dai H, et al. Discovery and characterisation of highly cooperative FAK-degrading PROTACs. Angew Chem Int Ed Engl. 2021;60:23327–34.

    Article  CAS  PubMed  Google Scholar 

  97. Rosenberg SC, Shanahan F, Yamazoe S, Kschonsak M, Zeng YJ, Lee J, et al. Ternary complex dissociation kinetics contribute to mutant-selective EGFR degradation. Cell Chem Biol. 2023;30:175–87.

    Article  CAS  Google Scholar 

  98. Smith BE, Wang SL, Jaime-Figueroa S, Harbin A, Wang J, Hamman BD, et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun. 2019;10:131.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Posternak G, Tang X, Maisonneuve P, Jin T, Lavoie H, Daou S, et al. Functional characterization of a PROTAC directed against BRAF mutant V600E. Nat Chem Biol. 2020;16:1170–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zoppi V, Hughes SJ, Maniaci C, Testa A, Gmaschitz T, Wieshofer C, et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J Med Chem. 2019;62:699–726.

    Article  CAS  PubMed  Google Scholar 

  101. Heim C, Pliatsika D, Mousavizadeh F, Bar K, Hernandez Alvarez B, Giannis A, et al. De-novo design of cereblon (CRBN) effectors guided by natural hydrolysis products of thalidomide derivatives. J Med Chem. 2019;62:6615–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kaneshige A, Bai L, Wang M, Mceachern D, Meagher JL, Xu R, et al. A selective small-molecule STAT5 PROTAC degrader capable of achieving tumor regression in vivo. Nat Chem Biol. 2023;19:703–11.

    Article  CAS  PubMed  Google Scholar 

  103. Hanzl A, Casement R, Imrichova H, Hughes SJ, Barone E, Testa A, et al. Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders. Nat Chem Biol. 2023;19:323–33.

    Article  CAS  PubMed  Google Scholar 

  104. Vieux EF, Agafonov RV, Emerson L, Isasa M, Deibler RW, Simard JR, et al. A method for determining the kinetics of small-molecule-induced ubiquitination. SLAS Discov. 2021;26:547–59.

    Article  CAS  PubMed  Google Scholar 

  105. Riching KM, Caine EA, Urh M, Daniels DL. The importance of cellular degradation kinetics for understanding mechanisms in targeted protein degradation. Chem Soc Rev. 2022;51:6210–21.

    Article  CAS  PubMed  Google Scholar 

  106. Bartlett DW, Gilbert AM. A kinetic proofreading model for bispecific protein degraders. J Pharmacokinet Pharmacodyn. 2021;48:149–63.

    Article  CAS  PubMed  Google Scholar 

  107. Mahan SD, Riching KM, Urh M, Daniels DL. Kinetic detection of E3:PROTAC: target ternary complexes using NanoBRET technology in live cells. Methods Mol Biol. 2021;2365:151–71.

    Article  CAS  PubMed  Google Scholar 

  108. Riching KM, Vasta JD, Hughes SJ, Zoppi V, Maniaci C, Testa A, et al. Translating PROTAC chemical series optimization into functional outcomes underlying BRD7 and BRD9 protein degradation. Curr Res Chem Biol. 2021;1:100009.

    Article  CAS  Google Scholar 

  109. Huang HT, Dobrovolsky D, Paulk J, Yang G, Weisberg EL, Doctor ZM, et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem Biol. 2018;25:88–99 e6.

    Article  CAS  PubMed  Google Scholar 

  110. Scholes NS, Mayor-Ruiz C, Winter GE. Identification and selectivity profiling of small-molecule degraders via multi-omics approaches. Cell Chem Biol. 2021;28:1048–60.

    Article  CAS  PubMed  Google Scholar 

  111. Jiang F, Wei Q, Li H, Li H, Cui Y, Ma Y, et al. Discovery of novel small molecule induced selective degradation of the bromodomain and extra-terminal (BET) bromodomain protein BRD4 and BRD2 with cellular potencies. Bioorg Med Chem. 2020;28:115181.

    Article  CAS  PubMed  Google Scholar 

  112. Park D, Izaguirre J, Coffey R, Xu H. Modeling the effect of cooperativity in ternary complex formation and targeted protein degradation mediated by heterobifunctional degraders. ACS Bio Med Chem Au. 2023;3:74–86.

    Article  CAS  PubMed  Google Scholar 

  113. Weng G, Cai X, Cao D, Du H, Shen C, Deng Y, et al. PROTAC-DB 2.0: an updated database of PROTACs. Nucleic Acids Res. 2023;51:D1367–D72.

    Article  PubMed  Google Scholar 

  114. Weng G, Shen C, Cao D, Gao J, Dong X, He Q, et al. PROTAC-DB: an online database of PROTACs. Nucleic Acids Res. 2021;49:D1381–D7.

    Article  CAS  PubMed  Google Scholar 

  115. Schneider M, Radoux CJ, Hercules A, Ochoa D, Dunham I, Zalmas LP, et al. The PROTACtable genome. Nat Rev Drug Discov. 2021;20:789–97.

    Article  CAS  PubMed  Google Scholar 

  116. Han B. A suite of mathematical solutions to describe ternary complex formation and their application to targeted protein degradation by heterobifunctional ligands. J Biol Chem. 2020;295:15280–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chaudhry C. A mathematical model for covalent proteolysis targeting chimeras: thermodynamics and kinetics underlying catalytic efficiency. chemrxiv. https://doi.org/10.26434/chemrxiv-2021-vw4qb. online ahead of print.

  118. Zheng S, Tan Y, Wang Z, Li C, Zhang Z, Sang X, et al. Accelerated rational PROTAC design via deep learning and molecular simulations. Nat Mach Intell. 2022;4:739–48.

    Article  Google Scholar 

  119. Imrie F, Bradley AR, Van Der Schaar M, Deane CM. Deep generative models for 3D linker design. J Chem Inf Model. 2020;60:1983–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li F, Hu Q, Zhang X, Sun R, Liu Z, Wu S, et al. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs. Nat Commun. 2022;13:7133.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Atilaw Y, Poongavanam V, Svensson Nilsson C, Nguyen D, Giese A, Meibom D, et al. Solution conformations shed light on PROTAC cell permeability. ACS Med Chem Lett. 2021;12:107–14.

    Article  CAS  PubMed  Google Scholar 

  122. Weerakoon D, Carbajo RJ, De Maria L, Tyrchan C, Zhao H. Impact of PROTAC linker plasticity on the solution conformations and dissociation of the ternary complex. J Chem Inf Model. 2022;62:340–9.

    Article  CAS  PubMed  Google Scholar 

  123. Volak LP, Duevel HM, Humphreys S, Nettleton D, Phipps C, Pike A, et al. Industry perspective on the pharmacokinetic and ADME characterization of heterobifunctional protein degraders. Drug Metab Dispos. 2023. https://doi.org/10.1124/dmd.122.001154. Online ahead of print.

  124. Edmondson SD, Yang B, Fallan C. Proteolysis targeting chimeras (PROTACs) in ‘beyond rule-of-five’ chemical space: recent progress and future challenges. Bioorg Med Chem Lett. 2019;29:1555–64.

    Article  CAS  PubMed  Google Scholar 

  125. Moreau K, Coen M, Zhang AX, Pachl F, Castaldi MP, Dahl G, et al. Proteolysis-targeting chimeras in drug development: a safety perspective. Br J Pharm. 2020;177:1709–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Christoph Zapf and Jodi Muckelbauer for careful review of the manuscript and Isha Verma for helpful discussions and review of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerabahu Shanmugasundaram.

Ethics declarations

Conflict of interest

All authors are currently employed by Bristol Myers Squibb and are shareholders of Bristol Myers Squibb.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hollingsworth, S., Johnson, S., Khakbaz, P. et al. The rise of targeting chimeras (TACs): next-generation medicines that preempt cellular events. Med Chem Res 32, 1294–1314 (2023). https://doi.org/10.1007/s00044-023-03104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03104-z

Keywords

Navigation