Skip to main content
Log in

PROTACs: Current Trends in Protein Degradation by Proteolysis-Targeting Chimeras

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

In the recent past, proteolysis-targeting chimera (PROTAC) technology has received enormous attention for its ability to overcome the limitations of protein inhibitors and its capability to target undruggable proteins. The PROTAC molecule consists of three components, a ubiquitin E3 ligase ligand, a linker, and a target protein ligand. The application of this technology is rapidly gaining momentum, especially in cancer therapy. In this review, we first look at the history of degraders, followed by a section on the ubiquitin proteasome system (UPS) and E3 ligases used in PROTAC development. PROTACs are dependent on the UPS for degradation of target proteins. We further discuss the scope and design of degraders and mitigation strategies for overcoming the hook effect seen with degraders. As PROTACs do not follow Lipinski’s ‘Rule of 5’, these molecules face drug metabolism and pharmacokinetic challenges. A detailed section on absorption, distribution, metabolism, and excretion of degraders is provided wherein we discuss methodologies and strategies to surmount the challenges faced by these molecules. For understanding PROTAC-mediated degradation, the characterization and measurement of protein levels in cells is important. Currently used techniques and recent advancements in assessment tools for degraders are discussed. Furthermore, we examine the challenges and emerging technologies that need to be focused on in order to competently develop potent degraders. Many companies are working in this area of emerging new modality and a few PROTACs have already entered clinical trials; the details of the trials are included in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cimas FJ, Niza E, Juan A, Noblejas-López MDM, Bravo I, Lara-Sanchez A, et al. Controlled delivery of bet-protacs: In vitro evaluation of MZ1-loaded polymeric antibody conjugated nanoparticles in breast cancer. Pharmaceutics. 2020;12(10):986.

    Article  CAS  PubMed Central  Google Scholar 

  2. Coleman N, Rodon J. Taking aim at the undruggable. Am Soc Clin Oncol Educ Book. 2021;41:1–8.

    PubMed  Google Scholar 

  3. Zahreddine H, Borden KLB. Mechanisms and insights into drug resistance in cancer. Front Pharmacol. 2013;4:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kastl JM, Davies G, Godsman E, Holdgate GA. Small-molecule degraders beyond PROTACs—challenges and opportunities. SLAS Discov Advanc Sci Drug Discov. 2021;26(4):524.

    Article  CAS  Google Scholar 

  5. Zou Y, Ma D, Wang Y. The PROTAC technology in drug development. Cell Biochem Funct. 2019;37(1):21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barghout SH. Targeted protein degradation: an emerging therapeutic strategy in cancer. Anti-Cancer Agents Med Chem. 2020;21(2).

  7. Luh LM, Scheib U, Juenemann K, Wortmann L, Brands M, Cromm PM. Prey for the proteasome: targeted protein degradation—a medicinal chemist’s perspective, vol. 59. Angewandte Chemie - International Edition; 2020.

  8. Gao H, Sun X, Rao Y. PROTAC technology: opportunities and challenges, vol. 11. ACS Medicinal Chemistry Letters; 2020.

  9. Ocaña A, Pandiella A. Proteolysis targeting chimeras (PROTACs) in cancer therapy. J Exp Clin Cancer Res. 2020;39(1).

  10. Khan S, He Y, Zhang X, Yuan Y, Pu S, Kong Q, et al. PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics. Oncogene. 2020;39(26).

  11. Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, et al. Protacs: Great opportunities for academia and industry, vol. 4. Signal Transduction and Targeted Therapy; 2019.

  12. Nomura DK, Dey M. Advances and opportunities in targeted protein degradation. Cell Chem Biol. 2021;28(7):887–8.

    Article  CAS  PubMed  Google Scholar 

  13. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA. 2001;98(15).

  14. Ishida T, Ciulli A. E3 ligase ligands for PROTACs: how they were found and how to discover new ones. SLAS Discov Adv Sci Drug Discov. 2021;26(4):484–502.

    Article  CAS  Google Scholar 

  15. Schneekloth JS, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, et al. Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc. 2004;126(12).

  16. Schneekloth AR, Pucheault M, Tae HS, Crews CM. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett. 2008;18(22):5904–8.

    Article  CAS  PubMed  Google Scholar 

  17. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20(11):1242–53.

    Article  CAS  PubMed  Google Scholar 

  18. Ciechanover A, Schwartz AL. The ubiquitin-proteasome pathway: The complexity and myriad functions of proteins death. Proc Natl Acad Sciences. 1998;95(6).

  19. Abbineni C, Satyam LK, Kuila B, Ettam A, Rawoof KA, MR S, et al. Abstract 1144: Orally bioavailable SMARCA2 degraders with exceptional selectivity and potency. In: Experimental and molecular therapeutics. American Association for Cancer Research; 2021. p. 1144. http://cancerres.aacrjournals.org/lookup/doi/https://doi.org/10.1158/1538-7445.AM2021-1144

  20. An S, Fu L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018;36:553–62.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol. 2006;17.

  22. Pei H, Peng Y, Zhao Q, Chen Y. Small molecule PROTACs: an emerging technology for targeted therapy in drug discovery. RSC Adv. 2019;9(30):16967–76. http://xlink.rsc.org/?DOI=C9RA03423D

  23. Qi SM, Dong J, Xu ZY, Cheng XD, Zhang WD, Qin JJ. PROTAC: an effective targeted protein degradation strategy for cancer therapy. Front Pharmacol. 2021;7:12.

    Google Scholar 

  24. den Besten W, Lipford JR. Prospecting for molecular glues, vol. 16. Nature Chemical Biology; 2020.

  25. Dong G, Ding Y, He S, Sheng C. Molecular glues for targeted protein degradation: from serendipity to rational discovery. J Med Chem. 2021;64(15).

  26. Ottis P, Toure M, Cromm PM, Ko E, Gustafson JL, Crews CM. Assessing different E3 ligases for small molecule induced protein ubiquitination and degradation. ACS Chem Biol. 2017;12(10).

  27. Girardini M, Maniaci C, Hughes SJ, Testa A, Ciulli A. Cereblon versus VHL: hijacking E3 ligases against each other using PROTACs. Bioorgan Med Chem. 2019;27(12).

  28. Galdeano C, Gadd MS, Soares P, Scaffidi S, van Molle I, Birced I, et al. Structure-guided design and optimization of small molecules targeting the protein–protein interaction between the von Hippel–Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J Med Chem. 2014;57(20).

  29. Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86(1):129–57.

    Article  CAS  PubMed  Google Scholar 

  30. Iconomou M, Saunders DN. Systematic approaches to identify E3 ligase substrates. Biochem J. 2016;473.

  31. Canning P, Bullock AN. New strategies to inhibit KEAP1 and the Cul3-based E3 ubiquitin ligases. Biochem Soc Trans. 2014;42(1).

  32. Poongavanam V, Kihlberg J. PROTAC cell permeability and oral bioavailability: a journey into uncharted territory. Future Med Chem. 2022;14(3):123–6.

    Article  CAS  PubMed  Google Scholar 

  33. Wei J, Meng F, Park KS, Yim H, Velez J, Kumar P, et al. Harnessing the E3 ligase KEAP1 for targeted protein degradation. J Am Chem Soc. 2021;143(37):15073–83.

    Article  CAS  PubMed  Google Scholar 

  34. Li L, Mi D, Pei H, Duan Q, Wang X, Zhou W, et al. In vivo target protein degradation induced by PROTACs based on E3 ligase DCAF15. Signal Transduct Target Ther. 2020;5(1):129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Canzani D, Rusnac DV, Zheng N, Bush MF. Degronomics: mapping the interacting peptidome of a ubiquitin ligase using an integrative mass spectrometry strategy. Anal Chem. 2019;91(20):12775–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dong C, Zhang H, Li L, Tempel W, Loppnau P, Min J. Molecular basis of GID4-mediated recognition of degrons for the Pro/N-end rule pathway. Nat Chem Biol. 2018;14(5):466–73.

    Article  CAS  PubMed  Google Scholar 

  37. Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Targ Ther. 2021;6(1).

  38. Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 2017;16(2):101–14.

    Article  CAS  PubMed  Google Scholar 

  39. Nalawansha DA, Crews CM. PROTACs: an emerging therapeutic modality in precision medicine. Cell Chem Biol. 2020;27(8).

  40. Kostic M, Jones LH. Critical assessment of targeted protein degradation as a research tool and pharmacological modality. Trends Pharmacol Sci. 2020;40.

  41. Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, Jaime-Figueroa S, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol. 2018;25(1):78-87.e5.

    Article  CAS  PubMed  Google Scholar 

  42. Mares A, Miah AH, Smith IED, Rackham M, Thawani AR, Cryan J, et al. Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2. Commun Biol. 2020;3(1):140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Donovan KA, Ferguson FM, Bushman JW, Eleuteri NA, Bhunia D, Ryu SS, et al. Mapping the degradable kinome provides a resource for expedited degrader development. Cell. 2020;183(6).

  44. Paiva SL, Crews CM. Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol. 2019;50:111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. King HM, Rana S, Kubica SP, Mallareddy JR, Kizhake S, Ezell EL, et al. Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax. Bioorgan Med Chem Lett. 2021;43.

  46. Wang Y, Jiang X, Feng F, Liu W, Sun H. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B. 2020;10.

  47. Bondeson DP, Mares A, Smith IED, Ko E, Campos S, Miah AH, et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol. 2015;11(8):611–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo WH, Qi X, Yu X, Liu Y, Chung CI, Bai F, et al. Enhancing intracellular accumulation and target engagement of PROTACs with reversible covalent chemistry. Nat Commun. 2020;11(1):4268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Daniels DL, Riching KM, Urh M. Monitoring and deciphering protein degradation pathways inside cells. Drug Discov Today Technol. 2019;31:61–8.

    Article  PubMed  Google Scholar 

  50. Han B. A suite of mathematical solutions to describe ternary complex formation and their application to targeted protein degradation by heterobifunctional ligands. J Biol Chem. 2020;295(45).

  51. Huang X, Dixit VM. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016;26(4).

  52. Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020;181(1):102–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smalley JP, Baker IM, Pytel WA, Lin LY, Bowman KJ, Schwabe JWR, et al. Optimization of class I HISTONE deacetylase PROTACs reveals that HDAC1/2 degradation is critical to induce apoptosis and cell arrest in cancer cells. J Med Chem. 2022;65(7):5642–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gadd MS, Testa A, Lucas X, Chan KH, Chen W, Lamont DJ, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol. 2017;13(5):514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Troup RI, Fallan C, Baud MGJ. Current strategies for the design of PROTAC linkers: a critical review. Explor Targ Anti-tumor Ther. 2020;1(5).

  56. Pillow TH, Adhikari P, Blake RA, Chen J, del Rosario G, Deshmukh G, et al. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem. 2020;15(1).

  57. Konstantinidou M, Li J, Zhang B, Wang Z, Shaabani S, ter Brake F, et al. PROTACs—a game-changing technology. Expert Opin Drug Discov. 2019;14(12).

  58. Pike A, Williamson B, Harlfinger S, Martin S, McGinnity DF. Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. Drug Discov Today. 2020;25(10):1793–800.

    Article  CAS  PubMed  Google Scholar 

  59. Fandozzi C, Evans C, Wilson A, Su D, Anderson M, Clausen V, et al. 2019 White paper on recent issues in bioanalysis: chromatographic assays (Part 1—Innovation in small molecules and oligonucleotides & mass spectrometric method development strategies for large molecule bioanalysis). Bioanalysis. 2019;11(22):2029–48.

    Article  PubMed  Google Scholar 

  60. Hann MM. Molecular obesity, potency and other addictions in drug discovery. Medchemcomm. 2011;2(5).

  61. Scott DE, Rooney TPC, Bayle ED, Mirza T, Willems HMG, Clarke JH, et al. Systematic investigation of the permeability of androgen receptor PROTACs. ACS Med Chem Lett. 2020;11(8):1539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cecchini C, Pannilunghi S, Tardy S, Scapozza L. From conception to development: investigating PROTACs features for improved cell permeability and successful protein degradation. Front Chem. 2021;9.

  63. Atilaw Y, Poongavanam V, Svensson Nilsson C, Nguyen D, Giese A, Meibom D, et al. Solution conformations shed light on PROTAC cell permeability. ACS Med Chem Lett. 2021;12(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  64. Klein VG, Townsend CE, Testa A, Zengerle M, Maniaci C, Hughes SJ, et al. Understanding and improving the membrane permeability of VH032-based PROTACs. ACS Med Chem Lett. 2020;11(9):1732–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ermondi G, Garcia-Jimenez D, Caron G. Protacs and building blocks: the 2d chemical space in very early drug discovery. Molecules. 2021;26(3).

  66. Maple HJ, Clayden N, Baron A, Stacey C, Felix R. Developing degraders: principles and perspectives on design and chemical space. Medchemcomm. 2019;10(10):1755–64.

    Article  CAS  PubMed  Google Scholar 

  67. Ermondi G, Jimenez DG, Sebastiano MR, Caron G. Rational control of molecular properties is mandatory to exploit the potential of PROTACs as oral drugs. ACS Med Chem Lett. 2021;12(7):1056–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Klein VG, Bond AG, Craigon C, Lokey RS, Ciulli A. Amide-to-ester substitution as a strategy for optimizing PROTAC permeability and cellular activity. J Med Chem. 2021.

  69. Jaime-Figueroa S, Buhimschi AD, Toure M, Hines J, Crews CM. Design, synthesis and biological evaluation of Proteolysis Targeting Chimeras (PROTACs) as a BTK degraders with improved pharmacokinetic properties. Bioorgan Med Chem Lett. 2020;30(3).

  70. Riching KM, Schwinn MK, Vasta JD, Robers MB, Machleidt T, Urh M, et al. CDK family PROTAC profiling reveals distinct kinetic responses and cell cycle-dependent degradation of CDK2. SLAS DISCOVERY Adv Sci Drug Discov. 2021;26(4):560–9.

    Article  CAS  Google Scholar 

  71. Nowak RP, Jones LH. Target validation using PROTACs: applying the four pillars framework. SLAS Discov. 2021;26(4).

  72. Liu X, Zhang X, Lv D, Yuan Y, Zheng G, Zhou D. Assays and technologies for developing proteolysis targeting chimera degraders. Future Med Chem. 2020;12.

  73. Chan C, Martin P, Liptrott NJ, Siccardi M, Almond L, Owen A. Incompatibility of chemical protein synthesis inhibitors with accurate measurement of extended protein degradation rates. Pharmacol Res Perspect. 2017;5(5): e00359.

    Article  PubMed Central  CAS  Google Scholar 

  74. Simard JR, Lee L, Vieux E, Improgo R, Tieu T, Phillips AJ, et al. High-throughput quantitative assay technologies for accelerating the discovery and optimization of targeted protein degradation therapeutics. SLAS Discov Adv Sci Drug Discov. 2021;26(4):503–17.

    Article  CAS  Google Scholar 

  75. Zoppi V, Hughes SJ, Maniaci C, Testa A, Gmaschitz T, Wieshofer C, et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J Med Chem. 2019;62(2):699–726.

    Article  CAS  PubMed  Google Scholar 

  76. Doherty MK, Beynon RJ. Protein turnover on the scale of the proteome. Expert Rev Proteom. 2006;3(1).

  77. Zhang AX, Cassidy K, Dahl G, Moreau K, Pachl F, Zuhl AM. The vital role of proteomics in characterizing novel protein degraders. SLAS Discov Adv Sci Drug Discov. 2021;26(4).

  78. Beveridge R, Kessler D, Rumpel K, Ettmayer P, Meinhart A, Clausen T. Native mass spectrometry can effectively predict PROTAC efficacy. ACS Central Sci. 2020;6(7).

  79. Peraro L, Deprey KL, Moser MK, Zou Z, Ball HL, Levine B, et al. Cell penetration profiling using the chloroalkane penetration assay. J Am Chem Soc. 2018;140(36).

  80. Zoppi V, Hughes SJ, Maniaci C, Testa A, Gmaschitz T, Wieshofer C, et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J Med Chem. 2019;62(2).

  81. Foley CA, Potjewyd F, Lamb KN, James LI, Frye SV. Assessing the cell permeability of bivalent chemical degraders using the chloroalkane penetration assay. ACS Chem Biol. 2020;15(1).

  82. Veits GK, Henderson CS, Vogelaar A, Eron SJ, Lee L, Hart A, et al. Development of an AchillesTAG degradation system and its application to control CAR-T activity. Curr Res Chem Biol. 2021;1: 100010.

    Article  CAS  Google Scholar 

  83. Goracci L, Desantis J, Valeri A, Castellani B, Eleuteri M, Cruciani G. Understanding the metabolism of proteolysis targeting chimeras (PROTACs): the next step toward pharmaceutical applications. J Med Chem. 2020;63(20).

  84. Moreau K, Coen M, Zhang AX, Pachl F, Castaldi MP, Dahl G, et al. Proteolysis-targeting chimeras in drug development: a safety perspective. Br J Pharmacol; 2020;177.

  85. Takahashi D, Moriyama J, Nakamura T, Miki E, Takahashi E, Sato A, et al. AUTACs: cargo-specific degraders using selective autophagy. Mol Cell. 2019;76(5).

  86. Takahashi D, Arimoto H. Targeting selective autophagy by AUTAC degraders. Autophagy. 2020;16.

  87. Dey SK, Jaffrey SR. RIBOTACs: small molecules target RNA for degradation. Cell Chem Biol; 2019;26.

  88. Alabi SB, Crews CM. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J Biol Chem. 2021;296: 100647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu T, Yoon H, Xiong Y, Dixon-Clarke SE, Nowak RP, Fischer ES. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat Struct Mol Biol. 2020;27.

  90. Rambacher KM, Calabrese MF, Yamaguchi M. Perspectives on the development of first-in-class protein degraders. Future Med Chem. 2021;13(14).

  91. van Regenmortel MHV. Antigenicity and immunogenicity of synthetic peptides. Biologicals. 2001.

  92. Ding Y, Fei Y, Lu B. Emerging new concepts of degrader technologies. Trends Pharmacol Sci. 2020;41.

  93. Ahn G, Banik SM, Miller CL, Riley NM, Cochran JR, Bertozzi CR. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat Chem Biol. 2021;17(9):937–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hyun S, Shin D. Chemical-mediated targeted protein degradation in neurodegenerative diseases. Life. 2021;11(7).

  95. Zhang J, Huang Y, Liu W, Li L, Chen L. Chaperone-mediated autophagy targeting chimeras (CMATAC) for the degradation of ERα in breast cancer. Biocell. 2020;44(4).

  96. Samarasinghe KTG, Jaime-Figueroa S, Burgess M, Nalawansha DA, Dai K, Hu Z, et al. Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras. Cell Chem Biol. 2021;28(5).

  97. Liu J, Chen H, Kaniskan HÜ, Xie L, Chen X, Jin J, et al. TF-PROTACs enable targeted degradation of transcription factors. J Am Chem Soc. 2021;143(23).

  98. Ng CSC, Banik SM. Taming transcription factors with TRAFTACs. Cell Chem Biol. 2021;28(5):588–90.

    Article  CAS  PubMed  Google Scholar 

  99. Scheepstra M, Hekking KFW, van Hijfte L, Folmer RHA. Bivalent ligands for protein degradation in drug discovery. Comput Struct Biotechnol J. 2019;17.

  100. Lebraud H, Wright DJ, Johnson CN, Heightman TD. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Central Sci. 2016;2(12).

  101. Petrylak DP, Gao X, Vogelzang NJ, Garfield MH, Taylor I, Dougan Moore M, et al. First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI). J Clin Oncol. 2020;38(15_suppl).

  102. Xiao L, Parolia A, Qiao Y, Bawa P, Eyunni S, Mannan R, et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature. 2022;601:434–439. https://www.nature.com/articles/s41586-021-04246-z

  103. Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21(3):181–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Xia L, Liu W, Song Y, Zhu H, Duan Y. The present and future of novel protein degradation technology. Curr Top Med Chem. 2019;19(20).

  105. Ishida T, Ciulli A. E3 Ligase ligands for PROTACs: how they were found and how to discover new ones. SLAS Discov. 2021;26(4).

  106. Gu S, Cui D, Chen X, Xiong X, Zhao Y. PROTACs: an emerging targeting technique for protein degradation in drug discovery. BioEssays. 2018;40(4).

  107. Garber K. The PROTAC gold rush. Nat Biotechnol. 2022;40(1):12–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JM, VKA, and KD made substantial contributions to the conception, writing and design of this manuscript. SS, SG, and MR revised the manuscript critically for important intellectual content and approved the version to be published. JM, VKA, KD, SS, MR, and SG agree to be accountable for all aspects of this work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Sanjeev Giri.

Ethics declarations

Funding

No funding was received for the preparation of this manuscript.

Conflicts of interest/competing interests

Jyotsana Madan, Vijay Kamal Ahuja, Susanta Samajdar, Murali Ramchandra, and Sanjeev Giri are employees of Aurigene Discovery Technologies Limited, Bangalore, and have no conflicts of interest that might be relevant to the contents of this manuscript. Kamal Dua declares that he has no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madan, J., Ahuja, V.K., Dua, K. et al. PROTACs: Current Trends in Protein Degradation by Proteolysis-Targeting Chimeras. BioDrugs 36, 609–623 (2022). https://doi.org/10.1007/s40259-022-00551-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-022-00551-9

Navigation