Skip to main content

Advertisement

Log in

Recent advances in structural types and medicinal chemistry of PARP-1 inhibitors

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Poly (ADP-ribose) Polymerase-1 (PARP-1) is a member of 17 membered PARP family having diversified biological functions such as synthetic lethality, DNA repair, apoptosis, necrosis and histone binding, etc. The U.S. FDA has approved four PARP-1 inhibitors, namely Olaparib, Rucaparib, Niraparib, and Talazoparib. And, Veliparib has entered the late stage of clinical research as a PARP-1 inhibitor. At present, PARP-1 inhibitors have been approved for ovarian cancer, breast cancer, pancreatic cancer and other related indications. In recent years, more and more novel PARP-1 inhibitors have been reported. This review has attempted to summarize the structural types and characteristics of various novel PARP-1 inhibitors reported since 2020. And we outlined the current clinical application potential of PARP-1 inhibitors and further analyzed its current challenges and future development trends.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guo C, Wang L, Li X, Wang S, Yu X, Xu K, et al. Discovery of novel bromophenol-thiosemicarbazone hybrids as potent selective inhibitors of Poly(ADP-Ribose) polymerase-1 (PARP-1) for use in cancer. J Med Chem. 2019;62:3051–67.

    Article  CAS  PubMed  Google Scholar 

  2. Ekhteiari Salmas R, Unlu A, Bektaş M, Yurtsever M, Mestanoglu M, Durdagi S. Virtual screening of small molecules databases for discovery of novel PARP-1 inhibitors: combination of in silico and in vitro studies. J Biomol Struct Dyn. 2017;35:1899–915.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao Y, Zhang L, Jiang T, Long J, Ma Z, Lu A, et al. The ups and downs of Poly (ADP-ribose) Polymerase-1 inhibitors in cancer therapy – current progress and future direction. Eur J Med Chem. 2020;203:112570.

    Article  CAS  PubMed  Google Scholar 

  4. Jain PG, Patel BD. Medicinal chemistry approaches of poly ADP-Ribose polymerase 1 (PARP1) inhibitors as anticancer agents – a recent update. Eur J Med Chem. 2019;165:198–215.

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Huan X, Liu Q, Wang Y, He Q, Tan C, et al. Design and synthesis of 2-(4,5,6,7-tetrahydrothienopyridin-2-Yl)-benzoimidazole carboxamides as novel orally efficacious poly(ADP-Ribose)polymerase (PARP) inhibitors. Eur J Med Chem. 2018;145:389–403.

    Article  CAS  PubMed  Google Scholar 

  6. Sherstyuk YV, Ivanisenko NV, Zakharenko AL, Sukhanova MV, Peshkov RY, Eltsov IV, et al. Design, synthesis and molecular modeling study of conjugates of ADP and morpholino nucleosides as a novel class of inhibitors of PARP‐1, PARP‐2 and PARP‐3. Int J Mol Sci. 2020;21:214.

    Article  CAS  Google Scholar 

  7. Fu L, Wang S, Wang X, Wang P, Zheng Y, Yao D, et al. Crystal structure-based discovery of a novel synthesized PARP1 inhibitor (OL-1) with apoptosis-inducing mechanisms in triple-negative breast cancer. Sci Rep. 2016;6:1–15.

    Article  CAS  Google Scholar 

  8. Gupte R, Liu Z, Kraus WL. Parps and Adp-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 2017;31:101–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohmoto A, Yachida S. Current status of poly(ADP-Ribose) polymerase inhibitors and future directions. Onco Targets Ther. 2017;10:5195–208.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, et al. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun. 2014;5:4426.

    Article  CAS  PubMed  Google Scholar 

  11. Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Onclo. 2019;16:81–104.

    Article  CAS  Google Scholar 

  12. Pazzaglia S, Pioli C. Multifaceted role of PARP-1 in DNA repair and inflammation: pathological and therapeutic implications in cancer and non-cancer diseases. Cells 2019;9:41.

    Article  PubMed Central  CAS  Google Scholar 

  13. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature 2012;481:287–94.

    Article  CAS  PubMed  Google Scholar 

  14. Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL, Jacobson MK. Human poly(ADP-Ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp Cell Res. 2004;297:521–32.

    Article  CAS  PubMed  Google Scholar 

  15. Iglesias P, Costoya J. The antimitotic potential of PARP inhibitors, an unexplored therapeutic alternative. Curr Top Med Chem. 2014;14:2346–65.

    Article  CAS  PubMed  Google Scholar 

  16. Galia A, Calogero AE, Condorelli RA, Fraggetta F, La CC, Ridolfo F, et al. PARP-1 protein expression in glioblastoma multiforme. Eur J Histochem. 2012;56:45–48.

    Article  CAS  Google Scholar 

  17. Fisher AEO, Hochegger H, Takeda S, Caldecott KW. Poly(ADP-Ribose) polymerase 1 accelerates single-strand break repair in concert with Poly(ADP-Ribose) glycohydrolase. Mol Cell Biol. 2007;27:5597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu S, Bai P, Little PJ, Liu P. Poly(ADP-Ribose) polymerase 1 (PARP1) in atherosclerosis: from molecular mechanisms to therapeutic implications. Med Res Rev. 2014;34:644–75.

    Article  CAS  PubMed  Google Scholar 

  19. Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S, Nehls MC, et al. Failure to degrade poly(ADP-Ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci USA. 2004;101:17699–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang B, Chu D, Feng Y, Shen Y, Aoyagi-Scharber M, Post LE. Discovery and characterization of (8S,9R)-5-Fluoro-8-(4-Fluorophenyl)-9-(1-Methyl-1H-1,2,4-Triazol-5-Yl)-2,7,8,9-Tetrahydro-3H-pyrido[4,3,2-De]phthalazin-3-One (BMN 673, Talazoparib), a novel, highly potent, and orally efficacious Poly(ADP-Ribose) polymerase-1/2 Inhibitor, as an anticancer agent. J Med Chem. 2016;59:335–57.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou J, Ji M, Zhu Z, Cao R, Chen X, Xu B. Discovery of 2-substituted 1H-Benzo[d]immidazole-4-Carboxamide derivatives as novel poly(ADP-Ribose)polymerase-1 inhibitors with in vivo anti-tumor activity. Eur J Med Chem. 2017;132:26–41.

    Article  CAS  PubMed  Google Scholar 

  22. Min R, Wu W, Wang M, Tang L, Chen D, Zhao H, et al. Discovery of 2-(1-(3-(4-Chloroxyphenyl)-3-Oxo-Propyl)pyrrolidine-3-Yl)-1H-Benzo[d]imidazole-4-Carboxamide: A Potent Poly(ADP-Ribose) Polymerase (PARP) Inhibitor for Treatment of Cancer. Molecules 2019;24:1901.

    Article  CAS  PubMed Central  Google Scholar 

  23. Lord CJ, Ashworth A. PARP Inhibitors: synthetic lethality in the clinic. Science 2017;355:1152–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu FW, Tewari KS. New targeted agents in gynecologic cancers: synthetic lethality, homologous recombination deficiency, and PARP inhibitors. Curr Treat Options Oncol. 2016;17:12.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rottenberg S, Jaspers E, Kersbergen A, Van Der Burg E, Nygren AOH, Zander SAL, et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci. 2008;105:17079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Evers B, Drost R, Schut E, De Bruin M, Van Burg E, Derksen PWB, et al. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res. 2008;14:3916–25.

    Article  CAS  PubMed  Google Scholar 

  27. Hay T, Matthews JR, Pietzka L, Lau A, Cranston A, Nygren AOH, et al. Poly (ADP-ribose) polymerase-1 inhibitor treatment regresses autochthonous Brca2/p53mutant mammary tumors in vivo and delays tumor relapse in combination with carboplatin. Cancer Res. 2009;69:3850–55.

    Article  CAS  PubMed  Google Scholar 

  28. Jenner ZB, Sood AK, Coleman RL. Evaluation of Rucaparib and Companion Diagnostics in the PARP Inhibitor Landscape for Recurrent Ovarian Cancer Therapy. Futur Oncol 2016;12:1439–56.

    Article  CAS  Google Scholar 

  29. Wei L, Wang M, Wang Q, Han Z. Dual targeting, a new strategy for novel PARP inhibitor discovery. Drug Disco Ther. 2021;15:300–9.

    Article  CAS  Google Scholar 

  30. Ihnen M, Eulenburg CZ, Kolarova T, Qi JW, Manivong K, Chalukya M, et al. Therapeutic Potential of the poly(ADP-Ribose) Polymerase Inhibitor Rucaparib for the Treatment of Sporadic Human Ovarian Cancer. Mol Cancer Ther. 2013;12:1002–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jones P, Altamura S, Boueres J, Ferrigno F, Rowley M. Discovery of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): A novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors. J Med Chem. 2009;52:7170–7185.

    Article  CAS  PubMed  Google Scholar 

  32. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. N. Engl J Med. 2016;375:2154–64.

    Article  CAS  PubMed  Google Scholar 

  33. Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, et al. The poly(ADP-Ribose) Polymerase Inhibitor Niraparib (MK4827) in BRCA Mutation Carriers and Patients with Sporadic Cancer: A Phase 1 Dose-Escalation Trial. Lancet Oncol. 2013;14:882–92.

    Article  CAS  PubMed  Google Scholar 

  34. Moore KN, Zhang ZY, Agarwal S, Patel MR, Burris HA, Martell RE, et al. Food Effect Substudy of a Phase 3 Randomized Double-Blind Trial of Maintenance with Niraparib (MK4827), a poly(ADP)ribose Polymerase (PARP) Inhibitor versus Placebo in Patients with Platinum-Sensitive Ovarian Cancer. J Clin Oncol. 2014;32:e16531–16531.

    Article  Google Scholar 

  35. Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, et al. BMN673, a Novel and Highly Potent PARP1/2 Inhibitor for the Treatment of Human Cancers with DNA Repair Deficiency. Clin Cancer Res. 2013;19:5003–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Bono JS, Mina LA, Gonzalez M, Curtin NJ, Wang E, Henshaw JW, et al. First-in-Human Trial of Novel Oral PARP Inhibitor BMN 673 in Patients with Solid Tumors. J Clin Oncol. 2013;31:2580.

    Article  Google Scholar 

  37. Shen Y, Aoyagi-Scharber M, Wang B. Trapping poly(ADP-Ribose) Polymerase. J Pharm Exp Ther. 2015;353:446–57.

    Article  CAS  Google Scholar 

  38. Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, et al. ABT-888, an Orally Active poly(ADP-Ribose) Polymerase Inhibitor That Potentiates DNA-Damaging Agents in Preclinical Tumor Models. Clin Cancer Res. 2007;13:2728–37.

    Article  CAS  PubMed  Google Scholar 

  39. Kummar S, Chen A, Ji J, Zhang Y, Reid JM, Ames M, et al. Phase I Study of PARP Inhibitor ABT-888 in Combination with Topotecan in Adults with Refractory Solid Tumors and Lymphomas. Cancer Res. 2011;71:5626–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kummar S, Oza AM, Fleming GF, Sullivan DM, Gandara DR, Naughton MJ, et al. Randomized Trial of Oral Cyclophosphamide and Veliparib in High-Grade Serous Ovarian, Primary Peritoneal, or Fallopian Tube Cancers, or BRCA-Mutant Ovarian Cancer. Clin Cancer Res. 2015;21:1574–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang X, Zhang C, Tang L, Lu K, Zhao H, Wu W, et al. Synthesis and Biological Evaluation of Piperidyl Benzimidazole Carboxamide Derivatives as Potent PARP-1 Inhibitors and Antitumor Agents. Chinese. Chem Lett. 2020;31:136–40.

    CAS  Google Scholar 

  42. Dai Q, Chen J, Gao C, Sun Q, Yuan Z, Jiang Y. Design, Synthesis and Biological Evaluation of Novel Phthalazinone Acridine Derivatives as Dual PARP and Topo Inhibitors for Potential Anticancer Agents. Chinese. Chem Lett. 2020;31:404–8.

    CAS  Google Scholar 

  43. Xin M, Sun J, Huang W, Tang F, Liu Z, Jin Q, et al. Design and Synthesis of Novel Phthalazinone Derivatives as Potent poly(ADP-Ribose)polymerase 1 Inhibitors. Future Med Chem 2020;12:1691–707.

    Article  CAS  PubMed  Google Scholar 

  44. Tian Y, Xie Z, Liao C. Design, synthesis and anticancer activities of novel dual poly(ADP-Ribose) Polymerase-1/histone Deacetylase-1 Inhibitors. Bioorg Med Chem Lett 2020;30:127036.

    Article  CAS  PubMed  Google Scholar 

  45. Lin S, Zhang LY, Zhang X, Yu Z, Huang X, Xu J. et al.Synthesis of novel dual target inhibitors of PARP and HSP90 and their antitumor activities. Bioorg Med Chem. 2020;28:115434

    Article  CAS  PubMed  Google Scholar 

  46. Shen H, Ge Y, Wang J, Li H, Xu Y, Zhu Q. Design, Synthesis and Biological Evaluation of Novel Molecules as Potent PARP-1 Inhibitors. Bioorg Med Chem Lett 2021;47:128169.

    Article  CAS  PubMed  Google Scholar 

  47. Xiang HY, Chen JY, Huan XJ, Chen Y, Gao Z, Ding J, et al. Identification of 2-Substituted pyrrolo[1,2-B]pyridazine Derivatives as New PARP-1 Inhibitors. Bioorg Med Chem Lett. 2021;31:27710.

    Article  CAS  Google Scholar 

  48. Zheng L, Ren R, Sun X, Zou Y, Shi Y, Di B, et al. Discovery of a Dual Tubulin and Poly(ADP-Ribose) Polymerase-1 Inhibitor by Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, and Biological Evaluation. J Med Chem. 2021;64:15702–15.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou J, Ji M, Wang X, Zhao H, Cao R, Jin J, et al. Discovery of Quinazoline-2,4(1H,3H)-dione Derivatives Containing 3-Substituted Piperizines as Potent PARP-1/2 Inhibitors: Design, Synthesis, In Vivo Antitumor Activity, and X-ray Crystal Structure Analysis. J Med Chem. 2021;64:16711–30.

    Article  CAS  PubMed  Google Scholar 

  50. Li S, Li XY, Zhang TJ, Zhu J, Liu KL, Wang DP, et al. Novel 4,5-Dihydrospiro[benzo[c]azepine-1,1′-Cyclohexan]-3(2H)-One Derivatives as PARP-1 Inhibitors: Design, Synthesis and Biological Evaluation. Bioorg Chem. 2021;111:104840.

    Article  CAS  PubMed  Google Scholar 

  51. Chen M, Huang H, Wu K, Liu Y, Jiang L, Li Y. Synthesis and evaluation of 2-(4-[4-Acetylpiperazine-1-Carbonyl] Phenyl)-1H-Benzo[d]imidazole-4-Carboxamide derivatives as potential PARP-1 inhibitors and preliminary study on structure-activity relationship. Drug Dev Res. 2022;83:55–63.

    Article  CAS  PubMed  Google Scholar 

  52. Yu J, Gou W, Shang H, Cui Y, Sun X, Luo L, et al. Design and synthesis of benzodiazepines as brain penetrating PARP-1 inhibitors. J Enzym Inhib Med Ch. 2022;37:952–72.

    Article  CAS  Google Scholar 

  53. Yu J, Luo L, Hu T, Cui Y, Sun X, Gou W, et al. Structure-based design, synthesis, and evaluation of inhibitors with high selectivity for PARP-1 over PARP-2. Eur J Med Chem. 2022;227:113898.

    Article  CAS  PubMed  Google Scholar 

  54. Li S, Li XY, Zhang TJ, Kamara MO, Liang JW, Zhu J, et al. Design, synthesis and biological evaluation of homoerythrina alkaloid derivatives bearing a triazole moiety as PARP-1 inhibitors and as potential antitumor drugs. Bioorg Chem. 2020;94:103385.

    Article  CAS  PubMed  Google Scholar 

  55. Li S, Li XY, Zhang TJ, Zhu J, Xue WH, Qian XH, et al. Design, synthesis and biological evaluation of erythrina derivatives bearing a 1,2,3-Triazole moiety as PARP-1 inhibitors. Bioorg Chem. 2020;96:103575.

    Article  CAS  PubMed  Google Scholar 

  56. Long H, Hu X, Wang B, Wang Q, Wang R, Liu S, et al. Discovery of novel apigenin-piperazine hybrids as potent and selective poly (ADP-Ribose) polymerase-1 (PARP-1) inhibitors for the treatment of cancer. J Med Chem. 2021;64:12089–108.

    Article  CAS  PubMed  Google Scholar 

  57. Divakar V, Swamy SG, Dukanya D, Shobith R, Yang J, Vijay P, et al. Design and activity of novel oxadiazole based compounds that target Poly(ADP-ribose) polymerase. Molecules 2022;27:703.

    Article  CAS  Google Scholar 

  58. O’Sullivan Coyne G, Chen AP, Meehan R, Doroshow JH. PARP inhibitors in reproductive system cancers: current use and developments. Drugs 2017;77:113–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wei H, Yu X. Functions of PARylation in DNA damage repair pathways. Genom Proteom Bioinf. 2016;14:131–39.

    Article  Google Scholar 

  60. Wang YQ, Wang PY, Wang YT, Yang GF, Zhang A, Miao ZH. An update on poly(ADP-Ribose)polymerase-1 (PARP-1) inhibitors: opportunities and challenges in cancer therapy. J Med Chem. 2016;59:9575–98.

    Article  CAS  PubMed  Google Scholar 

  61. Rugo HS, Olopade OI, DeMichele A, Yau C, Buxton MB, Hogarth M, et al. Adaptive randomization of Veliparib–Carboplatin treatment in breast Cancer. N. Engl J Med. 2016;375:23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhu X, Ma X, Hu Y. PARP1: A promising target for the development of PARP1-based candidates for anticancer intervention. Curr Med Chem. 2014;23:1756–74.

    Article  CAS  Google Scholar 

  63. Vyas S, Chang P. New PARP targets for cancer therapy. Nat Rev Cancer. 2014;14:502–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hou WH, Chen SH, Yu X. Poly-ADP ribosylation in DNA damage response and cancer therapy. Mutat Res-rev Mutat. 2019;780:82–91.

    Article  CAS  Google Scholar 

  65. Zaremba T, Curtin NJ. PARP inhibitor development for systemic cancer targeting. Anticancer Agents Med Chem. 2012;7:515–23.

    Article  Google Scholar 

  66. Alemasova EE, Lavrik OI. Poly(ADP-Ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res. 2019;47:3811–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou J, Ji M, Yao H, Cao R, Zhao H, Wang X, et al. Discovery of quinazoline-2,4(1H,3H)-dione derivatives as novel PARP-1/2 inhibitors: design, synthesis and their antitumor activity. Org Biomol Chem. 2018;16:3189–202.

    Article  CAS  PubMed  Google Scholar 

  68. Ekblad T, Schüler H. Sirtuins are unaffected by PARP inhibitors containing planar nicotinamide bioisosteres. Chem Biol Drug Des. 2016;87:478–82.

    Article  CAS  PubMed  Google Scholar 

  69. Murai J, Huang SYN, Das BB, Renaud A, Zhang Y, Doroshow JH, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72:5588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hopkins TA, Shi Y, Rodriguez LE, Solomon LR, Donawho CK, Di Giammarino EL, et al. Mechanistic dissection of PARP1 trapping and the impact on in vivo tolerability and efficacy of PARP inhibitors. Mol Cancer Res. 2015;13:1465–77.

    Article  CAS  PubMed  Google Scholar 

  71. Murai J, Zhang Y, Morris J, Ji J, Takeda S, Doroshow JH, et al. Rationale for poly(ADP-Ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition. J Pharm Exp Ther. 2014;349:408–16.

    Article  CAS  Google Scholar 

  72. Jungmichel S, Rosenthal F, Altmeyer M, Lukas J, Hottiger MO, Nielsen ML. Proteome-wide identification of poly(ADP-Ribosyl)ation targets in different genotoxic stress responses. Mol Cell. 2013;52:272–85.

    Article  CAS  PubMed  Google Scholar 

  73. Mateo J, Lord CJ, Serra V, Tutt A, Balmaña J, Castroviejo-Bermejo M, et al. A decade of clinical development of PARP inhibitors in perspective. Ann Oncol. 2019;30:1437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang L, Liang C, Li F, Guan D, Wu X, Fu X, et al. PARP1 in carcinomas and PARP1 inhibitors as antineoplastic drugs. Int J Mol Sci. 2017;18:2111.

    Article  PubMed Central  CAS  Google Scholar 

  75. Bixel K, Hays JL. Olaparib in the management of ovarian cancer. Pharmgenomics Pers Med. 2015;8:127–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Baptista SJ, Silva MMC, Moroni E, Meli M, Colombo G, Dinis TCP, et al. Novel PARP-1 inhibitor scaffolds disclosed by a dynamic structure-based pharmacophore approach. PLoS One. 2017;12:1–20.

    Article  Google Scholar 

  77. Boraei ATA, Singh PK, Sechi M, Satta S. Discovery of novel functionalized 1,2,4-Triazoles as PARP-1 inhibitors in breast cancer: design, synthesis and antitumor activity evaluation. Eur J Med Chem. 2019;182:111621.

    Article  CAS  PubMed  Google Scholar 

  78. Karpova Y, Wu C, Divan A, McDonnell ME, Hewlett E, Makhov P, et al. Non-NAD-like PARP-1 inhibitors in prostate cancer treatment. Biochem Pharm. 2019;167:149–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Science and Technology Project of Hebei Education Department (NO. QN2022161), and the 2022 Research Start‐up Fund for High‐level Talents of Chengde Medical University (NO. 202207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Yan, Zw., Wang, Yd. et al. Recent advances in structural types and medicinal chemistry of PARP-1 inhibitors. Med Chem Res 31, 1265–1276 (2022). https://doi.org/10.1007/s00044-022-02919-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02919-6

Keywords

Navigation