Skip to main content

Advertisement

Log in

Tumor-derived exosomal non-coding RNAs as diagnostic biomarkers in cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Almost all clinical oncologists agree that the discovery of reliable, accessible, and non-invasive biomarkers is necessary to decrease cancer mortality. It is possible to employ reliable biomarkers to diagnose cancer in the early stages, predict the patient prognosis, follow up the response to treatment, and estimate the risk of disease recurrence with high sensitivity and specificity. Extracellular vesicles (EVs), especially exosomes, have been the focus of translational research to develop such biomarkers over the past decade. The abundance and distribution of exosomes in bodily fluids, including serum, saliva, and urine, as well as their ability to transport various biomolecules (nucleic acids, proteins, and lipids) derived from their parent cells, make exosomes reliable, accessible, and potent biomarkers for diagnosis and follow-up of solid and hematopoietic tumors. In addition, exosomes play a vital role in various cellular processes, including tumor progression, by participating in intercellular communication. Although these advantages underline the high potential of tumor-derived exosomes as diagnostic biomarkers, the lack of standardized effective methods for their isolation, identification, and precise characterization makes their application challenging in clinical settings. We discuss the importance of non-coding RNAs (ncRNAs) in cellular processes, and the role of tumor-derived exosomes containing ncRNAs as potential biomarkers in several types of cancer. In addition, the advantages and challenges of these studies for translation into clinical applications are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132

    Article  PubMed  Google Scholar 

  2. Miller KD, Goding Sauer A, Ortiz AP, Fedewa SA, Pinheiro PS, Tortolero-Luna G et al (2018) Cancer statistics for hispanics/latinos, 2018. CA Cancer J Clin 68(6):425–445

    Article  PubMed  Google Scholar 

  3. Ebrahimi N, Akbari M, Ghanaatian M, Roozbahani Moghaddam P, Adelian S, Borjian Boroujeni M et al (2022) Development of neoantigens: from identification in cancer cells to application in cancer vaccines. Expert Rev Vac 21(7):941–955

    Article  CAS  Google Scholar 

  4. Zhu Q, Li N, Zeng X, Han Q, Li F, Yang C et al (2015) Hepatocellular carcinoma in a large medical center of China over a 10-year period: evolving therapeutic option and improving survival. Oncotarget 6(6):4440

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pasut A, Matsumoto A, Clohessy JG, Pandolfi PP (2016) The pleiotropic role of non-coding genes in development and cancer. Curr Opin Cell Biol 43:104–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ono S, Lam S, Nagahara M, Hoon DS (2015) Circulating microRNA biomarkers as liquid biopsy for cancer patients: pros and cons of current assays. J Clin Med 4(10):1890–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rapisuwon S, Vietsch EE, Wellstein A (2016) Circulating biomarkers to monitor cancer progression and treatment. Comput Struct Biotechnol J 14:211–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Babaei M, Rezaie J (2021) Application of stem cell-derived exosomes in ischemic diseases: opportunity and limitations. J Transl Med 19(1):1–11

    Article  Google Scholar 

  9. Huarte M, Rinn JL (2010) Large non-coding RNAs: missing links in cancer? Hum Mol Genet 19(R2):R152–R161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shen X, Qi P, Du X (2015) Long non-coding RNAs in cancer invasion and metastasis. Mod Pathol 28(1):4–13

    Article  CAS  PubMed  Google Scholar 

  11. Chang Y-N, Zhang K, Hu Z-M, Qi H-X, Shi Z-M, Han X-H et al (2016) Hypoxia-regulated lncRNAs in cancer. Gene 575(1):1–8

    Article  CAS  PubMed  Google Scholar 

  12. Qi P, Zhou X-y, Du X (2016) Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer 15(1):1–11

    Article  Google Scholar 

  13. Brinton LT, Sloane HS, Kester M, Kelly KA (2015) Formation and role of exosomes in cancer. Cell Mol Life Sci 72(4):659–671

    Article  CAS  PubMed  Google Scholar 

  14. Van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705

    Article  PubMed  Google Scholar 

  15. Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25(6):364–372

    Article  CAS  PubMed  Google Scholar 

  16. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51

    Article  CAS  PubMed  Google Scholar 

  17. Marks MS, Heijnen HF, Raposo G (2013) Lysosome-related organelles: unusual compartments become mainstream. Curr Opin Cell Biol 25(4):495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verma S, Bhavsar AS, Donovan J (2014) MR imaging-guided prostate biopsy techniques. Magn Reson Imaging Clin 22(2):135–144

    Article  Google Scholar 

  19. Vaidyanathan R, Soon RH, Zhang P, Jiang K, Lim CT (2019) Cancer diagnosis: from tumor to liquid biopsy and beyond. Lab Chip 19(1):11–34

    CAS  Google Scholar 

  20. Rolfo C, Castiglia M, Hong D, Alessandro R, Mertens I, Baggerman G et al (2014) Liquid biopsies in lung cancer: the new ambrosia of researchers. Biochimica et Biophysica Acta (BBA) Rev Cancer 1846(2):539–546

    Article  CAS  Google Scholar 

  21. Whiteside TL (2016) Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem 74:103–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Momen-Heravi F, Getting SJ, Moschos SA (2018) Extracellular vesicles and their nucleic acids for biomarker discovery. Pharmacol Ther 192:170–187

    Article  CAS  PubMed  Google Scholar 

  23. Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y et al (2020) Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther 5(1):1–14

    CAS  Google Scholar 

  24. Pham X-H, Hahm E, Huynh K-H, Son BS, Kim H-M, Jun B-H (2020) Sensitive colorimetric detection of prostate specific antigen using a peroxidase-mimicking anti-PSA antibody coated Au nanoparticle. BioChip J 14(2):158–168

    Article  CAS  Google Scholar 

  25. Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K et al (2014) Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS ONE 9(4):e92921

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu W, Hurley J, Roberts D, Chakrabortty S, Enderle D, Noerholm M et al (2021) Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol 32(4):466–477

    Article  CAS  PubMed  Google Scholar 

  27. Brinkman K, Meyer L, Bickel A, Enderle D, Berking C, Skog J et al (2020) Extracellular vesicles from plasma have higher tumour RNA fraction than platelets. J Extracell Vesicles 9(1):1741176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sonoda H, Yokota-Ikeda N, Oshikawa S, Kanno Y, Yoshinaga K, Uchida K et al (2009) Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 297(4):F1006–F1016

    Article  CAS  PubMed  Google Scholar 

  29. Nawaz M, Camussi G, Valadi H, Nazarenko I, Ekström K, Wang X et al (2014) The emerging role of extracellular vesicles as biomarkers for urogenital cancers. Nat Rev Urol 11(12):688–701 (PubMed PMID: 25403245. Epub 2014/11/19. eng)

    Article  PubMed  Google Scholar 

  30. Zhang S, Yang Y, Jia S, Chen H, Duan Y, Li X et al (2020) Exosome-like vesicles derived from Hertwig’s epithelial root sheath cells promote the regeneration of dentin-pulp tissue. Theranostics 10(13):5914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu J, Chen Y, Pei F, Zeng C, Yao Y, Liao W et al (2021) Extracellular vesicles in liquid biopsies: potential for disease diagnosis. Biomed Res Int 2021:1–17

    Google Scholar 

  32. Soares Martins T, Catita J, Martins Rosa I, AB da Cruz e Silva O, Henriques AG (2018) Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS ONE 13(6):e0198820

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mateescu B, Kowal EJ, van Balkom BW, Bartel S, Bhattacharyya SN, Buzás EI et al (2017) Obstacles and opportunities in the functional analysis of extracellular vesicle RNA–an ISEV position paper. J Extracell Vesicles 6(1):1286095

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9(2):197–208

    Article  CAS  PubMed  Google Scholar 

  35. Ghossoub R, Chéry M, Audebert S, Leblanc R, Egea-Jimenez AL, Lembo F et al (2020) Tetraspanin-6 negatively regulates exosome production. Proc Natl Acad Sci 117(11):5913–5922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mao W, Wang K, Wu Z, Xu B, Chen M (2021) Current status of research on exosomes in general, and for the diagnosis and treatment of kidney cancer in particular. J Exp Clin Cancer Res 40(1):1–13

    Article  Google Scholar 

  37. Mao Y, Wang Y, Dong L, Zhang Y, Zhang Y, Wang C et al (2019) Hypoxic exosomes facilitate angiogenesis and metastasis in esophageal squamous cell carcinoma through altering the phenotype and transcriptome of endothelial cells. J Exp Clin Cancer Res 38(1):1–14

    Article  Google Scholar 

  38. Hosseini K, Ranjbar M, Pirpour Tazehkand A, Asgharian P, Montazersaheb S, Tarhriz V et al (2022) Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing. J Transl Med 20(1):1–15

    Article  Google Scholar 

  39. Miraghel SA, Ebrahimi N, Khani L, Mansouri A, Jafarzadeh A, Ahmadi A et al (2022) Crosstalk between non-coding RNAs expression profile, drug resistance and immune response in breast cancer. Pharmacol Res 176:106041

    Article  CAS  PubMed  Google Scholar 

  40. Ahmadi M, Rezaie J (2021) Ageing and mesenchymal stem cells derived exosomes: molecular insight and challenges. Cell Biochem Funct 39(1):60–66 (PubMed PMID: 33164248. Epub 2020/11/10. eng)

    Article  CAS  PubMed  Google Scholar 

  41. Lakshmi S, Hughes TA, Priya S (2021) Exosomes and exosomal RNAs in breast cancer: a status update. Eur J Cancer 144:252–268

    Article  CAS  PubMed  Google Scholar 

  42. Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D’ippolito E, Cataldo A et al (2016) Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis 7(7):e2312-e

    Article  Google Scholar 

  43. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556

    Article  CAS  PubMed  Google Scholar 

  44. Wang H, Wei H, Wang J, Li L, Chen A, Li Z (2020) MicroRNA-181d-5p-containing exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast cancer. Mol Therapy-Nucleic Acids 19:654–667

    Article  CAS  Google Scholar 

  45. Ebrahimi N, Adelian S, Shakerian S, Afshinpour M, Chaleshtori SR, Rostami N et al (2022) Crosstalk between ferroptosis and the epithelial-mesenchymal transition: Implications for inflammation and cancer therapy. Cytokine Growth Factor Rev 64:33–45

    Article  CAS  PubMed  Google Scholar 

  46. Ding J, Xu Z, Zhang Y, Tan C, Hu W, Wang M et al (2018) Exosome-mediated miR-222 transferring: an insight into NF-κB-mediated breast cancer metastasis. Exp Cell Res 369(1):129–138

    Article  CAS  PubMed  Google Scholar 

  47. Camacho L, Guerrero P, Marchetti D (2013) MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes. PLoS ONE 8(9):e73790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Le MT, Hamar P, Guo C, Basar E, Perdigão-Henriques R, Balaj L et al (2014) miR-200–containing extracellular vesicles promote breast cancer cell metastasis. J Clin Investig 124(12):5109–5128

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ebrahimi N, Nasr Esfahani A, Samizade S, Mansouri A, Ghanaatian M, Adelian S et al (2022) The potential application of organoids in breast cancer research and treatment. Hum Genet 141(2):193–208

    Article  CAS  PubMed  Google Scholar 

  50. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR et al (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25(4):501–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Y, Liang Y, Sang Y, Song X, Zhang H, Liu Y et al (2018) MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1. Cell Death Dis 9(1):1–12

    Article  Google Scholar 

  52. Eichelser C, Stückrath I, Müller V, Milde-Langosch K, Wikman H, Pantel K et al (2014) Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget 5(20):9650

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL et al (2016) Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res 18(1):1–14

    Article  Google Scholar 

  54. Shen S, Song Y, Zhao B, Xu Y, Ren X, Zhou Y et al (2021) Cancer-derived exosomal miR-7641 promotes breast cancer progression and metastasis. Cell Commun Signal 19(1):1–13

    Article  Google Scholar 

  55. Xin Y, Wang X, Meng K, Ni C, Lv Z, Guan D (2020) Identification of exosomal miR-455-5p and miR-1255a as therapeutic targets for breast cancer. Biosci Rep 40(1):BSR20190303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jaiswal R, Gong J, Sambasivam S, Combes V, Mathys JM, Davey R et al (2012) Microparticle-associated nucleic acids mediate trait dominance in cancer. FASEB J 26(1):420–429

    Article  CAS  PubMed  Google Scholar 

  57. Jafari R, Rahbarghazi R, Ahmadi M, Hassanpour M, Rezaie J (2020) Hypoxic exosomes orchestrate tumorigenesis: molecular mechanisms and therapeutic implications. J Transl Med 18(1):474 (PubMed PMID: 33302971. Pubmed Central PMCID: PMC7731629. Epub 2020/12/12. eng)

    Article  PubMed  PubMed Central  Google Scholar 

  58. Soraya H, Sani NA, Jabbari N, Rezaie J (2021) Metformin increases exosome biogenesis and secretion in U87 MG human glioblastoma cells: a possible mechanism of therapeutic resistance. Arch Med Res 52(2):151–162 (PubMed PMID: 33059952. Epub 2020/10/17. eng)

    Article  CAS  PubMed  Google Scholar 

  59. Chen W, Liu X, Lv M, Chen L, Zhao J, Zhong S et al (2014) Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS ONE 9(4):e95240

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shah SH, Miller P, Garcia-Contreras M, Ao Z, Machlin L, Issa E et al (2015) Hierarchical paracrine interaction of breast cancer associated fibroblasts with cancer cells via hMAPK-microRNAs to drive ER-negative breast cancer phenotype. Cancer Biol Ther 16(11):1671–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J et al (2015) Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17(2):183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Santos JC, da Silva LN, Sarian LO, Matheu A, Ribeiro ML, Derchain SFM (2018) Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci Rep 8(1):1–11

    Article  Google Scholar 

  63. Shen M, Dong C, Ruan X, Yan W, Cao M, Pizzo D et al (2019) Chemotherapy-induced extracellular vesicle miRNAs promote breast cancer stemness by targeting ONECUT2. Can Res 79(14):3608–3621

    Article  CAS  Google Scholar 

  64. Miraghel SA, Ebrahimi N, Khani L, Mansouri A, Jafarzadeh A, Ahmadi A et al (2021) Crosstalk between non-coding RNAs expression profile, drug resistance and immune response in breast cancer. Pharmacol Res 176:106041

    Article  PubMed  Google Scholar 

  65. Xu C, Yang M, Ren Y, Wu C, Wang L (2016) Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. Eur Rev Med Pharmacol Sci 20(20):4362–4368

    PubMed  Google Scholar 

  66. Dong H, Wang W, Chen R, Zhang Y, Zou K, Ye M et al (2018) Exosome-mediated transfer of lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast cancer. Int J Oncol 53(3):1013–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nabet BY, Qiu Y, Shabason JE, Wu TJ, Yoon T, Kim BC et al (2017) Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell 170(2):352–66. e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang R, Xia Y, Wang Z, Zheng J, Chen Y, Li X et al (2017) Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun 490(2):406–414

    Article  CAS  PubMed  Google Scholar 

  69. Wang Y-L, Liu L-C, Hung Y, Chen C-J, Lin Y-Z, Wu W-R et al (2019) Long non-coding RNA HOTAIR in circulatory exosomes is correlated with ErbB2/HER2 positivity in breast cancer. Breast 46:64–69

    Article  PubMed  Google Scholar 

  70. Li Y, Zhao Z, Liu W, Li X (2020) SNHG3 functions as miRNA sponge to promote breast cancer cells growth through the metabolic reprogramming. Appl Biochem Biotechnol 191(3):1084–1099 (PubMed PMID: 31956955. Pubmed Central PMCID: PMC7320061. Epub 2020/01/21. eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang X, Pei X, Guo G, Qian X, Dou D, Zhang Z et al (2020) Exosome-mediated transfer of long noncoding RNA H19 induces doxorubicin resistance in breast cancer. J Cell Physiol 235(10):6896–6904 (PubMed PMID: 31994191. Epub 2020/01/30. eng.)

    Article  CAS  PubMed  Google Scholar 

  72. Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A (2020) Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 70(4):313

    Article  Google Scholar 

  73. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM et al (2019) Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 69(5):363–385

    Article  PubMed  Google Scholar 

  74. Wang S, Li X, Zhu R, Han Q, Zhao RC (2016) Lung cancer exosomes initiate global long non-coding RNA changes in mesenchymal stem cells. Int J Oncol 48(2):681–689

    Article  CAS  PubMed  Google Scholar 

  75. Ebrahimi N, Parkhideh S, Samizade S, Esfahani AN, Samsami S, Yazdani E et al (2022) Crosstalk between lncRNAs in the apoptotic pathway and therapeutic targets in cancer. Cytokine Growth Factor Rev 65:61–74

    Article  CAS  PubMed  Google Scholar 

  76. Deng Q, Fang Q, Xie B, Sun H, Bao Y, Zhou S (2020) Exosomal long non-coding RNA MSTRG. 292666.16 is associated with osimertinib (AZD9291) resistance in non-small cell lung cancer. Aging (Albany NY) 12(9):8001

    Article  CAS  PubMed  Google Scholar 

  77. Lee DH (2017) Treatments for EGFR-mutant non-small cell lung cancer (NSCLC): the road to a success, paved with failures. Pharmacol Ther 174:1–21

    Article  CAS  PubMed  Google Scholar 

  78. Zheng L-P, Chen L-Y, Liao X-Y, Xu Z-H, Chen Z-T, Sun J-G (2018) Case report: primary resistance to osimertinib in erlotinib-pretreated lung adenocarcinoma with EGFR T790 M mutation. BMC Cancer 18(1):1–4

    Article  Google Scholar 

  79. Zhou D, Xia Z, Xie M, Gao Y, Yu Q, He B (2021) Exosomal long non-coding RNA SOX2 overlapping transcript enhances the resistance to EGFR-TKIs in non-small cell lung cancer cell line H1975. Hum Cell 34(5):1478–1489

    Article  CAS  PubMed  Google Scholar 

  80. Isidro RA, Appleyard CB (2016) Colonic macrophage polarization in homeostasis, inflammation, and cancer. Am J Physiol Gastrointest Liver Physiol 311(1):G59–G73

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27(4):462–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Teng Y, Kang H, Chu Y (2019) Identification of an exosomal long noncoding RNA SOX2-OT in plasma as a promising biomarker for lung squamous cell carcinoma. Genet Test Mol Biomarkers 23(4):235–240

    Article  CAS  PubMed  Google Scholar 

  83. Zhang X, Guo H, Bao Y, Yu H, Xie D, Wang X (2019) Exosomal long non-coding RNA DLX6-AS1 as a potential diagnostic biomarker for non-small cell lung cancer. Oncol Lett 18(5):5197–5204

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li C, Lv Y, Shao C, Chen C, Zhang T, Wei Y et al (2019) Tumor-derived exosomal lncRNA GAS5 as a biomarker for early-stage non-small-cell lung cancer diagnosis. J Cell Physiol 234(11):20721–20727

    Article  CAS  PubMed  Google Scholar 

  85. Blenkiron C, Miska EA (2007) miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet 16(R1):R106–R113

    Article  CAS  PubMed  Google Scholar 

  86. Jin X, Chen Y, Chen H, Fei S, Chen D, Cai X et al (2017) Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non–small cell lung cancer using next-generation sequencing. Clin Cancer Res 23(17):5311–5319

    Article  CAS  PubMed  Google Scholar 

  87. Dejima H, Iinuma H, Kanaoka R, Matsutani N, Kawamura M (2017) Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 13(3):1256–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alipoor SD, Adcock IM, Garssen J, Mortaz E, Varahram M, Mirsaeidi M et al (2016) The roles of miRNAs as potential biomarkers in lung diseases. Eur J Pharmacol 791:395–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cazzoli R, Buttitta F, Di Nicola M, Malatesta S, Marchetti A, Rom WN et al (2013) microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol 8(9):1156–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Munagala R, Aqil F, Gupta RC (2016) Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumor Biol 37(8):10703–10714

    Article  CAS  Google Scholar 

  91. Liu Q, Yu Z, Yuan S, Xie W, Li C, Hu Z et al (2017) Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 8(8):13048

    Article  PubMed  Google Scholar 

  92. Zhang Z, Tang Y, Song X, Xie L, Zhao S, Song X (2020) Tumor-derived exosomal miRNAs as diagnostic biomarkers in non-small cell lung cancer. Front Oncol 10:2236

    Google Scholar 

  93. Tang Y, Zhang Z, Song X, Yu M, Niu L, Zhao Y et al (2020) Tumor-derived exosomal miR-620 as a diagnostic biomarker in non-small-cell lung cancer. J Oncol 2020:1–9

    Article  Google Scholar 

  94. Berindan-Neagoe I, Monroig PdC, Pasculli B, Calin GA (2014) MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin 64(5):311–336

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kim DH, Park S, Kim H, Choi YJ, Kim SY, Sung KJ et al (2020) Tumor-derived exosomal miR-619–5p promotes tumor angiogenesis and metastasis through the inhibition of RCAN1. 4. Cancer Lett 475:2–13

    Article  CAS  PubMed  Google Scholar 

  96. Chan B, Greenan G, McKeon F, Ellenberger T (2005) Identification of a peptide fragment of DSCR1 that competitively inhibits calcineurin activity in vitro and in vivo. Proc Natl Acad Sci 102(37):13075–13080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. van Rooij E, Doevendans PA, Crijns HJ, Heeneman S, Lips DJ, van Bilsen M et al (2004) MCIP1 overexpression suppresses left ventricular remodeling and sustains cardiac function after myocardial infarction. Circ Res 94(3):e18–e26

    PubMed  Google Scholar 

  98. Feghhi M, Rezaie J, Akbari A, Jabbari N, Jafari H, Seidi F et al (2021) Effect of multi-functional polyhydroxylated polyhedral oligomeric silsesquioxane (POSS) nanoparticles on the angiogenesis and exosome biogenesis in human umbilical vein endothelial cells (HUVECs). Mater Des 197:109227

    Article  CAS  Google Scholar 

  99. Sánchez CA, Andahur EI, Valenzuela R, Castellón EA, Fullá JA, Ramos CG et al (2016) Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget 7(4):3993

    Article  PubMed  Google Scholar 

  100. Ma Z, Wei K, Yang F, Guo Z, Pan C, He Y et al (2021) Tumor-derived exosomal miR-3157-3p promotes angiogenesis, vascular permeability and metastasis by targeting TIMP/KLF2 in non-small cell lung cancer. Cell Death Dis 12(9):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  102. Toiyama Y, Okugawa Y, Fleshman J, Boland CR (1870) Goel A (2018) MicroRNAs as potential liquid biopsy biomarkers in colorectal cancer: A systematic review. Biochimica et Biophysica Acta (BBA) Rev Cancer 2:274–282

    Google Scholar 

  103. Teng Y, Ren Y, Hu X, Mu J, Samykutty A, Zhuang X et al (2017) MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun 8(1):1–16

    Article  Google Scholar 

  104. Hassanpour M, Rezabakhsh A, Rezaie J, Nouri M, Rahbarghazi R (2020) Exosomal cargos modulate autophagy in recipient cells via different signaling pathways. Cell Biosci 10:92 (PubMed PMID: 32765827. Pubmed Central PMCID: PMC7395405. Epub 2020/08/09. eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Min L, Chen L, Liu S, Yu Y, Guo Q, Li P et al (2019) Loss of circulating exosomal miR-92b is a novel biomarker of colorectal cancer at early stage. Int J Med Sci 16(9):1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang H, Zhu M, Shan X, Zhou X, Wang T, Zhang J et al (2019) A panel of seven-miRNA signature in plasma as potential biomarker for colorectal cancer diagnosis. Gene 687:246–254

    Article  CAS  PubMed  Google Scholar 

  107. Wang J, Yan F, Zhao Q, Zhan F, Wang R, Wang L et al (2017) Circulating exosomal miR-125a-3p as a novel biomarker for early-stage colon cancer. Sci Rep 7(1):1–9

    PubMed  PubMed Central  Google Scholar 

  108. Hon KW, Abu N, Ab Mutalib N-S, Jamal R (2017) Exosomes as potential biomarkers and targeted therapy in colorectal cancer: a mini-review. Front Pharmacol 8:583

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rapado-González Ó, Álvarez-Castro A, López-López R, Iglesias-Canle J, Suárez-Cunqueiro MM, Muinelo-Romay L (2019) Circulating microRNAs as promising biomarkers in colorectal cancer. Cancers 11(7):898

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tang Y, Zhao Y, Song X, Song X, Niu L, Xie L (2019) Tumor-derived exosomal miRNA-320d as a biomarker for metastatic colorectal cancer. J Clin Lab Anal 33(9):e23004

    Article  PubMed  PubMed Central  Google Scholar 

  111. Liu C, Eng C, Shen J, Lu Y, Takata Y, Mehdizadeh A et al (2016) Serum exosomal miR-4772-3p is a predictor of tumor recurrence in stage II and III colon cancer. Oncotarget 7(46):76250

    Article  PubMed  PubMed Central  Google Scholar 

  112. Yan S, Liu G, Jin C, Wang Z, Duan Q, Xu J et al (2018) MicroRNA-6869-5p acts as a tumor suppressor via targeting TLR4/NF-κB signaling pathway in colorectal cancer. J Cell Physiol 233(9):6660–6668

    Article  CAS  PubMed  Google Scholar 

  113. Liang Z, Liu H, Wang F, Xiong L, Zhou C, Hu T et al (2019) LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death Dis 10(11):1–17

    Article  Google Scholar 

  114. Deng X, Ruan H, Zhang X, Xu X, Zhu Y, Peng H et al (2020) Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells. Int J Cancer 146(6):1700–1716

    Article  CAS  PubMed  Google Scholar 

  115. Huang Y, Luo Y, Ou W, Wang Y, Dong D, Peng X et al (2021) Exosomal lncRNA SNHG10 derived from colorectal cancer cells suppresses natural killer cell cytotoxicity by upregulating INHBC. Cancer Cell Int 21(1):528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu L, Meng T, Yang X-H, Sayim P, Lei C, Jin B et al (2018) Prognostic and predictive value of long non-coding RNA GAS5 and mircoRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. Cancer Biomark 22(2):283–299

    Article  CAS  PubMed  Google Scholar 

  117. Liu T, Zhang X, Gao S, Jing F, Yang Y, Du L et al (2016) Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget 7(51):85551

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hu D, Zhan Y, Zhu K, Bai M, Han J, Si Y et al (2018) Plasma exosomal long non-coding RNAs serve as biomarkers for early detection of colorectal cancer. Cell Physiol Biochem 51(6):2704–2715

    Article  CAS  PubMed  Google Scholar 

  119. Oehme F, Krahl S, Gyorffy B, Muessle B, Rao V, Greif H et al (2019) Low level of exosomal long non-coding RNA HOTTIP is a prognostic biomarker in colorectal cancer. RNA Biol 16(10):1339–1345

    Article  PubMed  PubMed Central  Google Scholar 

  120. Chen X, Liu Y, Zhang Q, Liu B, Cheng Y, Zhang Y et al (2021) Exosomal long non-coding RNA HOTTIP increases resistance of colorectal cancer cells to mitomycin via impairing MiR-214-mediated degradation of KPNA3. Front Cell Dev Biol 8:582723

    Article  PubMed  PubMed Central  Google Scholar 

  121. Barbagallo C, Brex D, Caponnetto A, Cirnigliaro M, Scalia M, Magnano A et al (2018) LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol Therapy Nucleic Acids 12:229–241

    Article  PubMed  Google Scholar 

  122. Ostenfeld MS, Jensen SG, Jeppesen DK, Christensen L-L, Thorsen SB, Stenvang J et al (2016) miRNA profiling of circulating EpCAM+ extracellular vesicles: promising biomarkers of colorectal cancer. J Extracell Vesicles 5(1):31488

    Article  PubMed  Google Scholar 

  123. Li J, Chen Y, Guo X, Zhou L, Jia Z, Peng Z et al (2017) GPC 1 exosome and its regulatory mi RNA s are specific markers for the detection and target therapy of colorectal cancer. J Cell Mol Med 21(5):838–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Karimi N, Feizi MAH, Safaralizadeh R, Hashemzadeh S, Baradaran B, Shokouhi B et al (2019) Serum overexpression of miR-301a and miR-23a in patients with colorectal cancer. J Chin Med Assoc 82(3):215–220

    Article  PubMed  Google Scholar 

  125. Matsumura T, Sugimachi K, Iinuma H, Takahashi Y, Kurashige J, Sawada G et al (2015) Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer 113(2):275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hu H-Y, Yu C-H, Zhang H-H, Zhang S-Z, Yu W-Y, Yang Y et al (2019) Exosomal miR-1229 derived from colorectal cancer cells promotes angiogenesis by targeting HIPK2. Int J Biol Macromol 132:470–477

    Article  CAS  PubMed  Google Scholar 

  127. Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J et al (2018) Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun 9(1):1–14

    Article  Google Scholar 

  128. Tsukamoto M, Iinuma H, Yagi T, Matsuda K, Hashiguchi Y (2017) Circulating exosomal microRNA-21 as a biomarker in each tumor stage of colorectal cancer. Oncology 92(6):360–370

    Article  CAS  PubMed  Google Scholar 

  129. Cheng WC, Liao TT, Lin CC, Yuan LTE, Lan HY, Lin HH et al (2019) RAB27B-activated secretion of stem-like tumor exosomes delivers the biomarker microRNA-146a-5p, which promotes tumorigenesis and associates with an immunosuppressive tumor microenvironment in colorectal cancer. Int J Cancer 145(8):2209–2224

    Article  CAS  PubMed  Google Scholar 

  130. Kral J, Korenkova V, Novosadova V, Langerova L, Schneiderova M, Liska V et al (2018) Expression profile of miR-17/92 cluster is predictive of treatment response in rectal cancer. Carcinogenesis 39(11):1359–1367

    Article  CAS  PubMed  Google Scholar 

  131. Fu F, Jiang W, Zhou L, Chen Z (2018) Circulating exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer. Transl Oncol 11(2):221–232

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jin G, Liu Y, Zhang J, Bian Z, Yao S, Fei B et al (2019) A panel of serum exosomal microRNAs as predictive markers for chemoresistance in advanced colorectal cancer. Cancer Chemother Pharmacol 84(2):315–325

    Article  CAS  PubMed  Google Scholar 

  133. Peng ZY, Gu RH, Yan B (2019) Downregulation of exosome-encapsulated miR-548c-5p is associated with poor prognosis in colorectal cancer. J Cell Biochem 120(2):1457–1463

    Article  CAS  Google Scholar 

  134. Yan S, Jiang Y, Liang C, Cheng M, Jin C, Duan Q et al (2018) Exosomal miR-6803-5p as potential diagnostic and prognostic marker in colorectal cancer. J Cell Biochem 119(5):4113–4119

    Article  CAS  PubMed  Google Scholar 

  135. Zou S-L, Chen Y-L, Ge Z-Z, Qu Y-Y, Cao Y, Kang Z-X (2019) Downregulation of serum exosomal miR-150-5p is associated with poor prognosis in patients with colorectal cancer. Cancer Biomark 26(1):69–77

    Article  CAS  PubMed  Google Scholar 

  136. Yagi T, Iinuma H, Hayama T, Matsuda K, Nozawa K, Tsukamoto M et al (2019) Plasma exosomal microRNA-125b as a monitoring biomarker of resistance to mFOLFOX6-based chemotherapy in advanced and recurrent colorectal cancer patients. Mol Clin Oncol 11(4):416–424

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ren D, Lin B, Zhang X, Peng Y, Ye Z, Ma Y et al (2017) Maintenance of cancer stemness by miR-196b-5p contributes to chemoresistance of colorectal cancer cells via activating STAT3 signaling pathway. Oncotarget 8(30):49807

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hon KW, Ab-Mutalib NS, Abdullah NMA, Jamal R, Abu N (2019) Extracellular Vesicle-derived circular RNAs confers chemoresistance in Colorectal cancer. Sci Rep 9(1):1–13

    Article  Google Scholar 

  139. Pan B, Qin J, Liu X, He B, Wang X, Pan Y et al (2019) Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet 10:1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li Y, Li C, Xu R, Wang Y, Li D, Zhang B (2019) A novel circFMN2 promotes tumor proliferation in CRC by regulating the miR-1182/hTERT signaling pathways. Clin Sci 133(24):2463–2479

    Article  CAS  Google Scholar 

  141. Barbagallo C, Brex D, Caponnetto A, Cirnigliaro M, Scalia M, Magnano A et al (2018) LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol Therapy Nucl Acids 12:229–241

    Article  Google Scholar 

  142. Salzman J (2016) Circular RNA expression: its potential regulation and function. Trends Genet 32(5):309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Feng W, Gong H, Wang Y, Zhu G, Xue T, Wang Y et al (2019) circIFT80 functions as a ceRNA of miR-1236-3p to promote colorectal cancer progression. Mol Therapy Nucl Acids 18:375–387

    Article  CAS  Google Scholar 

  144. Bhat A, Ritch CR (2019) Urinary biomarkers in bladder cancer: where do we stand? Curr Opin Urol 29(3):203–209

    Article  PubMed  Google Scholar 

  145. Abbastabar M, Sarfi M, Golestani A, Karimi A, Pourmand G, Khalili E (2020) Tumor-derived urinary exosomal long non-coding RNAs as diagnostic biomarkers for bladder cancer. EXCLI J 19:301

    PubMed  PubMed Central  Google Scholar 

  146. Zheng R, Du M, Wang X, Xu W, Liang J, Wang W et al (2018) Exosome–transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol Cancer 17(1):1–13

    Article  CAS  Google Scholar 

  147. Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A et al (2016) Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS ONE 11(1):e0147236

    Article  PubMed  PubMed Central  Google Scholar 

  148. Zheng H, Chen C, Luo Y, Yu M, He W, An M et al (2021) Tumor-derived exosomal BCYRN1 activates WNT5A/VEGF-C/VEGFR3 feedforward loop to drive lymphatic metastasis of bladder cancer. Clin Transl Med 11(7):e497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang S, Du L, Wang L, Jiang X, Zhan Y, Li J et al (2019) Evaluation of serum exosomal Lnc RNA-based biomarker panel for diagnosis and recurrence prediction of bladder cancer. J Cell Mol Med 23(2):1396–1405

    Article  CAS  PubMed  Google Scholar 

  150. Armstrong DA, Green BB, Seigne JD, Schned AR, Marsit CJ (2015) MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer. Mol Cancer 14(1):1–9

    Article  Google Scholar 

  151. Yasui T, Yanagida T, Ito S, Konakade Y, Takeshita D, Naganawa T et al (2017) Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Sci Adv 3(12):e1701133

    Article  PubMed  PubMed Central  Google Scholar 

  152. Andreu Z, Oshiro RO, Redruello A, López-Martín S, Gutiérrez-Vázquez C, Morato E et al (2017) Extracellular vesicles as a source for non-invasive biomarkers in bladder cancer progression. Eur J Pharm Sci 98:70–79

    Article  CAS  PubMed  Google Scholar 

  153. Matsuzaki K, Fujita K, Jingushi K, Kawashima A, Ujike T, Nagahara A et al (2017) MiR-21-5p in urinary extracellular vesicles is a novel biomarker of urothelial carcinoma. Oncotarget 8(15):24668

    Article  PubMed  PubMed Central  Google Scholar 

  154. Jiang X, Du L, Duan W, Wang R, Yan K, Wang L et al (2016) Serum microRNA expression signatures as novel noninvasive biomarkers for prediction and prognosis of muscle-invasive bladder cancer. Oncotarget 7(24):36733

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bayraktar R, Van Roosbroeck K (2018) miR-155 in cancer drug resistance and as target for miRNA-based therapeutics. Cancer Metastasis Rev 37(1):33–44

    Article  PubMed  Google Scholar 

  156. Fanous H, Sullivan T, Rieger-Christ K (2017) MP88-15 distinct exosomal mirna profiles in chemoresistant bladder carcinoma cell lines. J Urol 197(4S):e1179–e1180

    Article  Google Scholar 

  157. Piao X-M, Cha E-J, Yun SJ, Kim W-J (2021) Role of exosomal miRNA in bladder cancer: a promising liquid biopsy biomarker. Int J Mol Sci 22(4):1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rahib L, Wehner MR, Matrisian LM, Nead KT (2021) Estimated projection of US cancer incidence and death to 2040. JAMA Netw Open 4(4):e214708-e

    Article  Google Scholar 

  159. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F (2014) Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Prevent Biomarkers 23(5):700–713

    Article  Google Scholar 

  160. Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164(6):1226–1232

    Article  CAS  PubMed  Google Scholar 

  161. Huang Y-K, Yu J-C (2015) Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: an update and review. World J Gastroenterol WJG 21(34):9863

    Article  CAS  PubMed  Google Scholar 

  162. Zhao R, Zhang Y, Zhang X, Yang Y, Zheng X, Li X et al (2018) Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer 17(1):1–5

    Article  Google Scholar 

  163. Pan L, Liang W, Fu M, Huang Z, Li X, Zhang W et al (2017) Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J Cancer Res Clin Oncol 143(6):991–1004

    Article  CAS  PubMed  Google Scholar 

  164. Li Q, Shao Y, Zhang X, Zheng T, Miao M, Qin L et al (2015) Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumor Biol 36(3):2007–2012

    Article  Google Scholar 

  165. Lin L-Y, Yang L, Zeng Q, Wang L, Chen M-L, Zhao Z-H et al (2018) Tumor-originated exosomal lncUEGC1 as a circulating biomarker for early-stage gastric cancer. Mol Cancer 17(1):84

    Article  PubMed  PubMed Central  Google Scholar 

  166. Lu Y, Hou K, Li M, Wu X, Yuan S (2020) Exosome-Delivered LncHEIH Promotes Gastric Cancer Progression by Upregulating EZH2 and Stimulating Methylation of the GSDME Promoter. Front Cell Dev Biol 8:571297 (PubMed PMID: 33163491. eng)

    Article  PubMed  PubMed Central  Google Scholar 

  167. Wang M, Zhao C, Shi H, Zhang B, Zhang L, Zhang X et al (2014) Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers and a mechanism for gastric cancer. Br J Cancer 110(5):1199–1210 (PubMed PMID: 24473397. Pubmed Central PMCID: PMC3950864. Epub 2014/01/30. eng.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wei S, Peng L, Yang J, Sang H, Jin D, Li X et al (2020) Exosomal transfer of miR-15b-3p enhances tumorigenesis and malignant transformation through the DYNLT1/Caspase-3/Caspase-9 signaling pathway in gastric cancer. J Exp Clin Cancer Res CR. 39(1):32 (PubMed PMID: 32039741. Pubmed Central PMCID: PMC7011526. Epub 2020/02/11. eng)

    Article  PubMed  Google Scholar 

  169. Deng Z, Wu J, Xu S, Chen F, Zhang Z, Jin A et al (2020) Exosomes-microRNAs interacted with gastric cancer and its microenvironment: a mini literature review. Biomark Med 14(2):141–150 (PubMed PMID: 32064893. Epub 2020/02/18. eng)

    Article  CAS  PubMed  Google Scholar 

  170. Guo X, Lv X, Ru Y, Zhou F, Wang N, Xi H et al (2020) Circulating exosomal gastric cancer-associated long noncoding RNA1 as a biomarker for early detection and monitoring progression of gastric cancer: a multiphase study. JAMA Surg 155(7):572–579 (PubMed PMID: 32520332. eng)

    Article  PubMed  PubMed Central  Google Scholar 

  171. Wang N, Wang L, Yang Y, Gong L, Xiao B, Liu X (2017) A serum exosomal microRNA panel as a potential biomarker test for gastric cancer. Biochem Biophys Res Commun 493(3):1322–1328 (PubMed PMID: 28986250. Epub 2017/10/08. eng.)

    Article  CAS  PubMed  Google Scholar 

  172. Li S, Zhang M, Zhang H, Hu K, Cai C, Wang J et al (2020) Exosomal long noncoding RNA lnc-GNAQ-6:1 may serve as a diagnostic marker for gastric cancer. Clinica chimica acta: Int J Clin Chem 501:252–257 (PubMed PMID: 31730812. Epub 2019/11/16. eng)

    Article  CAS  Google Scholar 

  173. Kumata Y, Iinuma H, Suzuki Y, Tsukahara D, Midorikawa H, Igarashi Y et al (2018) Exosome-encapsulated microRNA-23b as a minimally invasive liquid biomarker for the prediction of recurrence and prognosis of gastric cancer patients in each tumor stage. Oncol Rep 40(1):319–330 (PubMed PMID: 29749537. Epub 2018/05/12. eng)

    CAS  PubMed  Google Scholar 

  174. Tokuhisa M, Ichikawa Y, Kosaka N, Ochiya T, Yashiro M, Hirakawa K et al (2015) Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer. PLoS ONE 10(7):e0130472 (PubMed PMID: 26208314. Pubmed Central PMCID: PMC4514651. Epub 2015/07/25. eng)

    Article  PubMed  PubMed Central  Google Scholar 

  175. Yang H, Fu H, Wang B, Zhang X, Mao J, Li X et al (2018) Exosomal miR-423–5p targets SUFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. Mol Carcinog 57(9):1223–1236 (PubMed PMID: 29749061. Epub 2018/05/12. eng)

    Article  CAS  PubMed  Google Scholar 

  176. Ge L, Zhang N, Li D, Wu Y, Wang H, Wang J (2020) Circulating exosomal small RNAs are promising non-invasive diagnostic biomarkers for gastric cancer. J Cell Mol Med 24(24):14502–14513 (PubMed PMID: 33169519. Pubmed Central PMCID: PMC7753781. Epub 2020/11/11. eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y et al (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS ONE 5(10):e13247

    Article  PubMed  PubMed Central  Google Scholar 

  178. Tsai CC, Chen TY, Tsai KJ, Lin MW, Hsu CY, Wu DC et al (2020) NF-κB/miR-18a-3p and miR-4286/BZRAP1 axis may mediate carcinogenesis in Helicobacter pylori-Associated gastric cancer. Biomedicine pharmacotherapy= Biomedecine pharmacotherapie. 132:110869 (PubMed PMID: 33113427. Epub 2020/10/29. eng)

    Article  CAS  PubMed  Google Scholar 

  179. Feng C, She J, Chen X, Zhang Q, Zhang X, Wang Y et al (2019) Exosomal miR-196a-1 promotes gastric cancer cell invasion and metastasis by targeting SFRP1. Nanomedicine (Lond) 14(19):2579–2593 (PubMed PMID: 31609675. Epub 2019/10/15. eng)

    Article  CAS  PubMed  Google Scholar 

  180. Zhu M, Zhang N, He S, Lu X (2020) Exosomal miR-106a derived from gastric cancer promotes peritoneal metastasis via direct regulation of Smad7. Cell cycle (Georgetown, Tex). 19(10):1200–1221 (PubMed PMID: 32267797. Pubmed Central PMCID: PMC7217357. Epub 2020/04/09. eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Xia X, Wang S, Ni B, Xing S, Cao H, Zhang Z et al (2020) Hypoxic gastric cancer-derived exosomes promote progression and metastasis via MiR-301a-3p/PHD3/HIF-1α positive feedback loop. Oncogene 39(39):6231–6244 (PubMed PMID: 32826951. Epub 2020/08/23. eng)

    Article  CAS  PubMed  Google Scholar 

  182. Zhou W, Wang L, Miao Y, Xing R (2018) Novel long noncoding RNA GACAT3 promotes colorectal cancer cell proliferation, invasion, and migration through miR-149. Onco Targets Ther 11:1543–1552 (PubMed PMID: 29593420. Pubmed Central PMCID: PMC5865577. Epub 2018/03/30. eng)

    Article  PubMed  PubMed Central  Google Scholar 

  183. Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D et al (2020) CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer 19(1):43 (PubMed PMID: 32106859. Pubmed Central PMCID: PMC7045485. Epub 2020/02/29. eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Shi L, Wang Z, Geng X, Zhang Y, Xue Z (2020) Exosomal miRNA-34 from cancer-associated fibroblasts inhibits growth and invasion of gastric cancer cells in vitro and in vivo. Aging (Albany NY). 12(9):8549–8564 (PubMed PMID: 32391804. Pubmed Central PMCID: PMC7244055. Epub 2020/05/12. eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ren W, Zhang X, Li W, Feng Q, Feng H, Tong Y et al (2019) Exosomal miRNA-107 induces myeloid-derived suppressor cell expansion in gastric cancer. Cancer Manage Res 11:4023–4040 (PubMed PMID: 31190980. Pubmed Central PMCID: PMC6511657. Epub 2019/06/14. eng)

    Article  CAS  Google Scholar 

  186. Shi Y, Wang Z, Zhu X, Chen L, Ma Y, Wang J et al (2020) Exosomal miR-1246 in serum as a potential biomarker for early diagnosis of gastric cancer. Int J Clin Oncol 25(1):89–99 (PubMed PMID: 31506750. Epub 2019/09/12. eng)

    Article  CAS  PubMed  Google Scholar 

  187. Li Q, Li B, Li Q, Wei S, He Z, Huang X et al (2018) Exosomal miR-21–5p derived from gastric cancer promotes peritoneal metastasis via mesothelial-to-mesenchymal transition. Cell Death Dis 9(9):854 (PubMed PMID: 30154401. Pubmed Central PMCID: PMC6113299. Epub 2018/08/30. eng)

    Article  PubMed  PubMed Central  Google Scholar 

  188. Wang M, Qiu R, Yu S, Xu X, Li G, Gu R et al (2019) Paclitaxel-resistant gastric cancer MGC-803 cells promote epithelial-to-mesenchymal transition and chemoresistance in paclitaxel-sensitive cells via exosomal delivery of miR-155-5p. Int J Oncol 54(1):326–338 (PubMed PMID: 30365045. Pubmed Central PMCID: PMC6254863. Epub 2018/10/27. eng)

    CAS  PubMed  Google Scholar 

  189. Wang L, Bo X, Yi X, Xiao X, Zheng Q, Ma L et al (2020) Exosome-transferred LINC01559 promotes the progression of gastric cancer via PI3K/AKT signaling pathway. Cell Death Dis 11(9):723 (PubMed PMID: 32895368. Pubmed Central PMCID: PMC7477231. Epub 2020/09/09. eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F et al (2020) Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582–3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer 19(1):112 (PubMed PMID: 32600329. Pubmed Central PMCID: PMC7322843. Epub 2020/07/01. eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Piao HY, Guo S, Wang Y, Zhang J (2021) Exosome-transmitted lncRNA PCGEM1 promotes invasive and metastasis in gastric cancer by maintaining the stability of SNAI1. Clin Transl Oncol 23(2):246–256 (PubMed PMID: 32519176. Epub 2020/06/11. eng)

    Article  CAS  PubMed  Google Scholar 

  192. Wang S, Ping M, Song B, Guo Y, Li Y, Jia J (2020) Exosomal CircPRRX1 enhances doxorubicin resistance in gastric cancer by regulating MiR-3064–5p/PTPN14 signaling. Yonsei Med J 61(9):750–761 (PubMed PMID: 32882759. Pubmed Central PMCID: PMC7471080. Epub 2020/09/04. eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wang J, Lv B, Su Y, Wang X, Bu J, Yao L (2019) Exosome-mediated transfer of lncRNA HOTTIP promotes cisplatin resistance in gastric cancer cells by regulating HMGA1/miR-218 axis. Onco Targets Ther 12:11325–11338 (PubMed PMID: 31908497. Pubmed Central PMCID: PMC6930390. Epub 2020/01/08. eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Li Q, Shao Y, Zhang X, Zheng T, Miao M, Qin L et al (2015) Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol 36(3):2007–2012 (PubMed PMID: 25391424. Epub 2014/11/14. eng)

    Article  PubMed  Google Scholar 

  195. Rutherford MJ, Arnold M, Bardot A, Ferlay J, De P, Tervonen H et al (2021) Comparison of liver cancer incidence and survival by subtypes across seven high-income countries. Int J Cancer 149(12):2020–2031

    Article  CAS  PubMed  Google Scholar 

  196. Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Mark MT et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Liu H, Chen W, Zhi X, Chen E-J, Wei T, Zhang J et al (2018) Tumor-derived exosomes promote tumor self-seeding in hepatocellular carcinoma by transferring miRNA-25-5p to enhance cell motility. Oncogene 37(36):4964–4978

    Article  CAS  PubMed  Google Scholar 

  198. Fang T, Lv H, Lv G, Li T, Wang C, Han Q et al (2018) Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun 9(1):1–13

    Article  Google Scholar 

  199. Cao S-Q, Zheng H, Sun B-C, Wang Z-L, Liu T, Guo D-H et al (2019) Long non-coding RNA highly up-regulated in liver cancer promotes exosome secretion. World J Gastroenterol 25(35):5283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A et al (2021) Cancer statistics for the year 2020: an overview. Int J Cancer. https://doi.org/10.1002/ijc.33588

    Article  PubMed  Google Scholar 

  201. Vaksman O, Tropé C, Davidson B, Reich R (2014) Exosome-derived miRNAs and ovarian carcinoma progression. Carcinogenesis 35(9):2113–2120

    Article  CAS  PubMed  Google Scholar 

  202. Ma R, Ye X, Cheng H, Cui H, Chang X (2021) Tumor-derived exosomal circRNA051239 promotes proliferation and migration of epithelial ovarian cancer. Am J Transl Res 13(3):1125

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Yang C, Kim HS, Park SJ, Lee EJ, Kim SI, Song G et al (2019) Inhibition of miR-214-3p aids in preventing epithelial ovarian cancer malignancy by increasing the expression of LHX6. Cancers 11(12):1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21 (PubMed PMID: 18589210. Epub 2008/07/01. eng)

    Article  CAS  PubMed  Google Scholar 

  205. He L, Zhu W, Chen Q, Yuan Y, Wang Y, Wang J et al (2019) Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics. 9(26):8206–8220 (PubMed PMID: 31754391. Pubmed Central PMCID: PMC6857047. Epub 2019/11/23. eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sun Z, Liu B, Liu Z-H, Song W, Wang D, Chen B-Y et al (2020) Notochordal-cell-derived exosomes induced by compressive load inhibit angiogenesis via the miR-140-5p/Wnt/β-catenin axis. Mol Therapy Nucl Acids 22:1092–1106

    Article  CAS  Google Scholar 

  207. Ebrahimi N, Kharazmi K, Ghanaatian M, Miraghel SA, Amiri Y, Seyedebrahimi SS et al (2022) Role of the Wnt and GTPase pathways in breast cancer tumorigenesis and treatment. Cytokine Growth Factor Rev

  208. Ying X, Wu Q, Wu X, Zhu Q, Wang X, Jiang L et al (2016) Epithelial ovarian cancer-secreted exosomal miR-222–3p induces polarization of tumor-associated macrophages. Oncotarget 7(28):43076–43087 (PubMed PMID: 27172798. Pubmed Central PMCID: PMC5190009. Epub 2016/05/14. eng)

    Article  PubMed  PubMed Central  Google Scholar 

  209. Alharbi M, Zuñiga F, Elfeky O, Guanzon D, Lai A, Rice GE et al (2018) The potential role of miRNAs and exosomes in chemotherapy in ovarian cancer. Endocr Relat Cancer 25(12):R663–R685

    Article  CAS  PubMed  Google Scholar 

  210. Chen J, Wu S, Wang J, Sha Y, Ji Y (2022) Hsa_circ_0074269-mediated Upregulation of TUFT1 Through miR-485-5p Increases Cisplatin Resistance in Cervical Cancer. Reprod Sci. https://doi.org/10.1007/s43032-022-00855-9

    Article  PubMed  Google Scholar 

  211. Liu O, Wang C, Wang S, Hu Y, Gou R, Dong H et al (2021) Keratin 80 regulated by miR-206/ETS1 promotes tumor progression via the MEK/ERK pathway in ovarian cancer. J Cancer 12(22):6835–6850 (PubMed PMID: 34659572. Pubmed Central PMCID: PMC8517993. Epub 2021/10/19. eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wang J, Liu L (2021) MiR-149-3p promotes the cisplatin resistance and EMT in ovarian cancer through downregulating TIMP2 and CDKN1A. J Ovarian Res 14(1):1–12

    Article  CAS  Google Scholar 

  213. Yu H, Pan S (2020) MiR-202-5p suppressed cell proliferation, migration and invasion in ovarian cancer via regulating HOXB2. Eur Rev Med Pharmacol Sci 24:2256–2263

    PubMed  Google Scholar 

  214. Meng X, Müller V, Milde-Langosch K, Trillsch F, Pantel K, Schwarzenbach H (2016) Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget 7(13):16923–16935 (PubMed PMID: 26943577. Pubmed Central PMCID: PMC4941360. Epub 2016/03/05. eng)

    Article  PubMed  PubMed Central  Google Scholar 

  215. Li F, Liang Z, Jia Y, Zhang P, Ling K, Wang Y et al (2022) microRNA-324-3p suppresses the aggressive ovarian cancer by targeting WNK2/RAS pathway. Bioengineered 13(5):12030–12044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kobayashi M, Salomon C, Tapia J, Illanes SE, Mitchell MD, Rice GE (2014) Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200. J Transl Med 12:4 (PubMed PMID: 24393345. Pubmed Central PMCID: PMC3896684. Epub 2014/01/08. eng)

    Article  PubMed  PubMed Central  Google Scholar 

  217. Cao J, Zhang Y, Mu J, Yang D, Gu X, Zhang J (2021) Exosomal miR-21–5p contributes to ovarian cancer progression by regulating CDK6. Hum Cell 34(4):1185–1196

    Article  CAS  PubMed  Google Scholar 

  218. Mateescu B, Batista L, Cardon M, Gruosso T, De Feraudy Y, Mariani O et al (2011) miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med 17(12):1627–1635

    Article  CAS  PubMed  Google Scholar 

  219. Samuel P, Carter DRF (2017) The diagnostic and prognostic potential of microRNAs in epithelial ovarian carcinoma. Mol Diagn Ther 21(1):59–73

    Article  CAS  PubMed  Google Scholar 

  220. Wang X, Jiang L, Liu Q (2022) miR-18a-5p derived from mesenchymal stem cells-extracellular vesicles inhibits ovarian cancer cell proliferation, migration, invasion, and chemotherapy resistance. J Transl Med 20(1):1–19

    PubMed  PubMed Central  Google Scholar 

  221. Yin J, Huang H-Y, Long Y, Ma Y, Kamalibaike M, Dawuti R et al (2021) circ_C20orf11 enhances DDP resistance by inhibiting miR-527/YWHAZ through the promotion of extracellular vesicle-mediated macrophage M2 polarization in ovarian cancer. Cancer Biol Ther 22(7–9):440–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Liu J, Yoo J, Ho JY, Jung Y, Lee S, Hur SY et al (2021) Plasma-derived exosomal miR-4732–5p is a promising noninvasive diagnostic biomarker for epithelial ovarian cancer. J Ovarian Res 14(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  223. Taheri M, Shoorei H, Anamag FT, Ghafouri-Fard S, Dinger ME (2021) LncRNAs and miRNAs participate in determination of sensitivity of cancer cells to cisplatin. Exp Mol Pathol 123:104602

    Article  CAS  PubMed  Google Scholar 

  224. Amirmahani F, Ebrahimi N, Askandar RH, Rasouli Eshkaftaki M, Fazeli K, Hamblin MR (2021) Long noncoding RNAs CAT2064 and CAT2042 may function as diagnostic biomarkers for prostate cancer by affecting target MicrorRNAs. Indian J Clin Biochem. https://doi.org/10.1007/s12291-021-00999-6

    Article  Google Scholar 

  225. Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC et al (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Can Res 71(15):5346–5356

    Article  CAS  Google Scholar 

  226. Qu L, Ding J, Chen C, Wu Z-J, Liu B, Gao Y et al (2016) Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29(5):653–668

    Article  CAS  PubMed  Google Scholar 

  227. Xiao H, Shi J (2020) Exosomal circular RNA_400068 promotes the development of renal cell carcinoma via the miR-210-5p/SOCS1 axis. Mol Med Rep 22(6):4810–4820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Guo Z, Wang X, Yang Y, Chen W, Zhang K, Teng B et al (2020) Hypoxic tumor-derived exosomal long noncoding RNA UCA1 promotes angiogenesis via miR-96-5p/AMOTL2 in pancreatic cancer. Mol Therapy Nucl Acids 22:179–195

    Article  CAS  Google Scholar 

  229. Zhou R, Chen KK, Zhang J, Xiao B, Huang Z, Ju C et al (2018) The decade of exosomal long RNA species: an emerging cancer antagonist. Mol Cancer 17(1):1–14

    Article  PubMed  PubMed Central  Google Scholar 

  230. Buschmann D, Kirchner B, Hermann S, Märte M, Wurmser C, Brandes F et al (2019) Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing. J Extracell Vesicles 8(1):1581487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M et al (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14(1):1–14

    Article  Google Scholar 

  232. Sempere LF, Keto J, Fabbri M (2017) Exosomal MicroRNAs in breast cancer towards diagnostic and therapeutic applications. Cancers (Basel). 9(7) PubMed PMID: 28672799. Pubmed Central PMCID: PMC5532607. Epub 2017/07/05. eng

  233. Rupp AK, Rupp C, Keller S, Brase JC, Ehehalt R, Fogel M et al (2011) Loss of EpCAM expression in breast cancer derived serum exosomes: role of proteolytic cleavage. Gynecol Oncol 122(2):437–446 (PubMed PMID: 21601258. Epub 2011/05/24. eng)

    Article  CAS  PubMed  Google Scholar 

  234. Işın M, Uysaler E, Özgür E, Köseoğlu H, Şanlı Ö, Yücel ÖB et al (2015) Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front Genet 6:168

    PubMed  PubMed Central  Google Scholar 

  235. Dijkstra S, Birker IL, Smit FP, Leyten GH, de Reijke TM, van Oort IM et al (2014) Prostate cancer biomarker profiles in urinary sediments and exosomes. J Urol 191(4):1132–1138

    Article  CAS  PubMed  Google Scholar 

  236. Wang J, Zhou Y, Lu J, Sun Y, Xiao H, Liu M et al (2014) Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol 31(9):1–8

    Article  Google Scholar 

  237. Dong L, Lin W, Qi P, Xu M-d, Wu X, Ni S et al (2016) Circulating long RNAs in serum extracellular vesicles: their characterization and potential application as biomarkers for diagnosis of colorectal cancer. Cancer Epidemiol Biomark Prev 25(7):1158–1166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of those whose fruitful research has contributed in any way to the elucidation of tumor-derived exosomes roles and their ncRNA expression profiles as diagnostic biomarkers in oncology. The author(s) received no financial support for the research, authorship, and/or publication of this article.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

NE, FF, and SSF contributed to conceptualization, writing, and original draft preparation; PRM, EY, ZK, FR-T, and SA performed data curation and writing; MR. H and ARA performed supervision and writing—reviewing and editing.

Corresponding authors

Correspondence to Michael R. Hamblin or Amir Reza Aref.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, N., Faghihkhorasani, F., Fakhr, S.S. et al. Tumor-derived exosomal non-coding RNAs as diagnostic biomarkers in cancer. Cell. Mol. Life Sci. 79, 572 (2022). https://doi.org/10.1007/s00018-022-04552-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04552-3

Keywords

Navigation