Skip to main content
Log in

High-Temperature Annealing Significantly Enhances Intrinsic Hot Workability of the As-cast High-Nitrogen M42 High-Speed Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

One important challenge in producing high-speed steels (HSSs) by conventional route is how to improve their hot workability. In this work, the effect of high-temperature annealing on the microstructure evolution and hot deformation behavior of the as-cast high-nitrogen M42 HSS was studied. The results indicated that the as-cast microstructure of high-nitrogen M42 HSS mainly consisted of the dendrite cells of matrix, interdendritic network of M2C eutectic carbides, primary M(C,N) carbonitrides, and intradendritic fine M2C secondary carbides. After high-temperature annealing, M2C eutectic carbides were transformed into M6C and M(C,N) products via a diffusion-driven reaction of M2C + matrix → M6C + M(C,N), and M6C carbides were the dominant products. Initially, M6C and M(C,N) nucleated at the M2C/matrix interface, and then grew inward from outside. With increasing annealing temperature and time, the average length–width ratio of interdendritic mixed carbides of M2C and M6C gradually decreased. The full decomposition and breaking of M2C eutectic carbides in the as-cast high-nitrogen M42 HSS could be achieved by annealing at 1100 °C for 8 hours. Meanwhile, high-temperature annealing led to the decreased amount of intradendritic M2C secondary carbides and the formation of M6C carbides within the intradendritic region. The high-temperature annealed steel exhibited higher flow stress than the as-cast steel at most deformation conditions, but lower deformation activation energy. The macroscopic morphologies showed that the hot workability of the high-temperature annealed steel was evidently better than that of the as-cast steel, which could be attributed to its better deformation compatibility and more sufficient dynamic recrystallization (DRX). Moreover, high-temperature annealing treatment led to a more uniform carbide distribution after hot compression. Therefore, high-temperature annealing treatment may provide an opportunity to further maintain or even improve the competitiveness of HSS produced by conventional route compared with those by powder metallurgy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. W.C. Jiao, H.B. Li, H. Feng, Z.H. Jiang, J. Dai, H.C. Zhu, S.C. Zhang, M.S. Chu, and W. Wu: ISIJ Int., 2020, vol. 60, pp. 564–72.

    Article  CAS  Google Scholar 

  2. D. Bombač, M. Terčelj, M. Fazarinc, and G. Kugler: Mater. Sci. Eng. A., 2017, vol. 703, pp. 438–50.

    Article  CAS  Google Scholar 

  3. H.L. Peng, L. Hu, T.W. Ngai, L.J. Li, X.L. Zhang, H. Xie, and W.P. Gong: Mater. Sci. Eng. A., 2018, vol. 719, pp. 21–26.

    Article  CAS  Google Scholar 

  4. Y.H. Liu, Y.Q. Ning, Z.K. Yao, and M.W. Fu: Mater. Des., 2014, vol. 54, pp. 854–63.

    Article  CAS  Google Scholar 

  5. W.C. Jiao, H.B. Li, H. Feng, Z.H. Jiang, L.F. Xia, S.C. Zhang, H.C. Zhu, and W. Wu: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2240–51.

    Article  CAS  Google Scholar 

  6. H.C. Zhu, Z.H. Jiang, H.B. Li, H. Feng, W.C. Jiao, S.C. Zhang, P.B. Wang, and J.H. Zhu: ISIJ Int., 2018, vol. 58, pp. 1267–74.

    Article  CAS  Google Scholar 

  7. Y.W. Luo, H.J. Guo, X.L. Sun, J. Guo, and F. Wang: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 5976–86.

    Article  CAS  Google Scholar 

  8. M.A. Hamidzadeh, M. Meratian, and A. Saatchi: Mater. Sci. Eng. A, 2013, vol. 571, pp. 193–98.

    Article  CAS  Google Scholar 

  9. P.D. Ding, G.Q. Shi, and S.Z. Zhou: Metall. Mater. Trans. A, 1993, vol. 24A, pp. 1265–72.

    Article  CAS  Google Scholar 

  10. X.F. Zhou, W.L. Zhu, H.B. Jiang, F. Fang, Y.Y. Tu, and J.Q. Jiang: J. Iron Steel Res. Int., 2016, vol. 23, pp. 800–07.

    Article  Google Scholar 

  11. F.S. Pan, W.Q. Wang, A.T. Tang, L.Z. Wu, T.T. Liu, and R.J. Cheng: Prog. Nat. Sci-Mater., 2011, vol. 21, pp. 180–86.

    Article  Google Scholar 

  12. E.S. Lee, W.J. Park, J.Y. Jung, and S. Ahn: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1395–1404.

    Article  CAS  Google Scholar 

  13. J. Hufenbach, A. Helth, M.H. Lee, H. Wendrock, L. Giebeler, C.Y. Choe, K.H. Kim, U. Kühn, T.S. Kim, and J. Eckert: Mater. Sci. Eng. A, 2016, vol. 674, pp. 366–74.

    Article  CAS  Google Scholar 

  14. X.F. Zhou, X.Y. Yin, F. Fang, J.Q. Jiang, and W.L. Zhu: J. Rare Earths., 2012, vol. 30, pp. 1075–78.

    Article  CAS  Google Scholar 

  15. M. Boccalini and H. Goldenstein: Int. Mater. Rev., 2001, vol. 46, pp. 92–115.

    Article  CAS  Google Scholar 

  16. Y.K. Luan, N.N. Song, Y.L. Bai, X.H. Kang, and D.Z. Li: J. Mater. Process. Technol., 2010, vol. 210, pp. 536–41.

    Article  CAS  Google Scholar 

  17. M. Godec, T. Večko Pirtovšek, B. Šetina Batič, P. McGuiness, J. Burja, and B. Podgornik: Sci. Rep., 2015, vol. 5, p. 16202.

    Article  CAS  Google Scholar 

  18. X.F. Zhou, W.C. Zhang, Z.X. Zheng, D. Liu, F. Fang, Y.Y. Tu, and J.Q. Jiang: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 3552–64.

    Article  CAS  Google Scholar 

  19. W.F. Liu, Y.F. Guo, Y.F. Cao, J.Q. Wang, Z.Y. Hou, M.Y. Sun, B. Xu, and D.Z. Li: J. Alloys Compd., 2021, vol. 889, p. 161755.

    Article  CAS  Google Scholar 

  20. X.F. Zhou, D. Liu, W.L. Zhu, F. Fang, Y.Y. Tu, and J.Q. Jiang: J. Iron Steel Res. Int., 2017, vol. 24, pp. 43–49.

    Article  Google Scholar 

  21. Y.W. Luo, H.J. Guo, X.L. Sun, and J. Guo: Sci. Rep., 2018, vol. 8, p. 4328.

    Article  CAS  Google Scholar 

  22. L. Chen, J.M. Pei, F. Li, Y.J. Zhang, M.J. Wang, and X.C. Ma: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5662–69.

    Article  CAS  Google Scholar 

  23. L. Lu, L.G. Hou, J.X. Zhang, H.B. Wang, H. Cui, J.F. Huang, Y.A. Zhang, and J.S. Zhang: Mater. Charact., 2016, vol. 117, pp. 1–8.

    Article  CAS  Google Scholar 

  24. M.R. Ghomashchi: Acta Mater., 1998, vol. 46, pp. 5207–20.

    Article  CAS  Google Scholar 

  25. Z.Y. He, H.B. Li, Z.W. Ni, H.C. Zhu, Z.H. Jiang, H. Feng, and D.S. Mao: Steel Res. Int., 2021, vol. 92, p. 2100197.

    Article  CAS  Google Scholar 

  26. Y. Han, H.B. Li, H. Feng, K.M. Li, Y.Z. Tian, and Z.H. Jiang: J. Mater. Sci. Technol., 2021, vol. 65, pp. 210–15.

    Article  CAS  Google Scholar 

  27. S.C. Zhang, J.T. Yu, H.B. Li, Z.H. Jiang, Y.F. Geng, H. Feng, B.B. Zhang, and H.C. Zhu: J. Mater. Sci. Technol., 2022, vol. 102, pp. 105–14.

    Article  Google Scholar 

  28. H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, and Z.G. Chen: Corros. Sci., 2018, vol. 144, pp. 288–300.

    Article  CAS  Google Scholar 

  29. Y. Han, H.B. Li, H. Feng, Y.Z. Tian, Z.H. Jiang, and T. He: Mater. Sci. Eng. A., 2021, vol. 814, p. 141235.

    Article  CAS  Google Scholar 

  30. S.C. Zhang, H.B. Li, Z.H. Jiang, Z.X. Li, J.X. Wu, B.B. Zhang, F. Duan, H. Feng, and H.C. Zhu: J. Mater. Sci. Technol., 2020, vol. 42, pp. 143–55.

    Article  Google Scholar 

  31. National Standard GB/T 14979-1994: Eutectic carbide of steel - Micrographic method using standard diagrams, The State Bureau of Technical Supervision, 1994.

  32. C. Ai, L. Liu, J. Zhang, M. Guo, Z.R. Li, T.W. Huang, J. Zhou, S.S. Li, S.K. Gong, and G. Liu: J. Alloys Compd., 2018, vol. 754, pp. 85–92.

    Article  CAS  Google Scholar 

  33. L. Gong, B. Chen, L. Zhang, Y.C. Ma, and K. Liu: J. Mater. Sci. Technol., 2018, vol. 34, pp. 811–20.

    Article  CAS  Google Scholar 

  34. T.P. Hou, Y. Li, Y.D. Zhang, and K.M. Wu: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 2553–61.

    Article  CAS  Google Scholar 

  35. M. Hashimoto, O. Kubo, and Y. Matsubara: ISIJ Int., 2004, vol. 44, pp. 372–80.

    Article  CAS  Google Scholar 

  36. R.G. Shephard, J.D.L. Harrison, and L.E. Russell: Powder Metall., 1973, vol. 16, pp. 200–19.

    Article  CAS  Google Scholar 

  37. X.F. Zhou, F. Fang, J.Q. Jiang, W.L. Zhu, and H.X. Xu: Mater. Sci. Techol.-Lond., 2012, vol. 28, pp. 1499–504.

    Article  CAS  Google Scholar 

  38. A.S. Chaus, M. Beznák, M. Bohačík, J. Porubský, and P. Úradník: Defect Diffus. Forum., 2012, vol. 326–328, pp. 348–53.

    Article  CAS  Google Scholar 

  39. X.F. Zhou, F. Fang, J.Q. Jiang, W.L. Zhu, and H.X. Xu: Mater. Sci. Techol.-Lond., 2014, vol. 30, pp. 116–22.

    Article  CAS  Google Scholar 

  40. R. Wang, W. Zhang, Y.H. Li, D.Z. Li, Y. Kang, X.M. Yang, J. Eckert, and Z.J. Yan: Mater. Charact., 2021, vol. 171, p. 110746.

    Article  CAS  Google Scholar 

  41. X. Zhou, M.J. Wang, Y.F. Fu, Z.X. Wang, Y.M. Li, S.K. Yang, H.C. Zhao, and H.B. Li: Mater. Charact., 2017, vol. 124, pp. 182–91.

    Article  CAS  Google Scholar 

  42. S.J. Zheng, X.H. Yuan, X. Gong, T. Le, and A.V. Ravindra: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2342–55.

    Article  CAS  Google Scholar 

  43. H. Feng, Z.H. Jiang, H.B. Li, W.C. Jiao, X.X. Li, H.C. Zhu, S.C. Zhang, B.B. Zhang, and M.H. Cai: Steel Res. Int., 2017, vol. 88, p. 1700149.

    Article  CAS  Google Scholar 

  44. G.L. Ji, Q. Li, and L. Li: Mater. Sci. Eng. A., 2014, vol. 615, pp. 247–54.

    Article  CAS  Google Scholar 

  45. Q. Zhang, Q. Li, X. Chen, J. Bao, and Z. Chen: Mater. Sci. Eng. A, 2021, vol. 826, p. 142026.

    Article  CAS  Google Scholar 

  46. F.Y. Dong, Y. Yuan, W.D. Li, Y. Zhang, P.K. Liaw, X.G. Yuan, and H.J. Huang: Intermetallics, 2020, vol. 126, p. 106921.

    Article  CAS  Google Scholar 

  47. K. Tang, Z.B. Zhang, J. Tian, Y.K. Wu, and F. Jiang: J. Alloys Compd., 2021, vol. 860, p. 158541.

    Article  CAS  Google Scholar 

  48. Q.Y. Liao, Y.C. Jiang, Q.C. Le, X.R. Chen, C.L. Cheng, K. Hu, and D.D. Li: J. Mater. Sci. Technol., 2021, vol. 61, pp. 1–15.

    Article  CAS  Google Scholar 

  49. Q.H. Zang, H.S. Yu, Y.S. Lee, M.S. Kim, and H.W. Kim: Mater. Charact., 2019, vol. 151, pp. 404–13.

    Article  CAS  Google Scholar 

  50. L.W. Xu, H.B. Li, Z.H. Jiang, M.H. Cai, W.C. Jiao, H. Feng, S.C. Zhang, and P.C. Lu: Steel Res. Int., 2020, vol. 91, p. 2000035.

    Article  CAS  Google Scholar 

  51. C.M. Sellars and W.J. McTegart: Acta Metall., 1966, vol. 14, pp. 1136–38.

    Article  CAS  Google Scholar 

  52. P.R. Yang, M.H. Cai, C.F. Wu, J.H. Su, and X.P. Guo: Mater. Sci. Eng. A, 2018, vol. 729, pp. 230–40.

    Article  CAS  Google Scholar 

  53. H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh: Acta Mater., 2011, vol. 59, pp. 6441–48.

    Article  CAS  Google Scholar 

  54. H. Mirzadeh, A. Najafizadeh, and M. Moazeny: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2950–58.

    Article  CAS  Google Scholar 

  55. L.H. Li, F.G. Qi, Q. Wang, C.H. Hou, N. Zhao, Y. Yang, S.S. Chai, and X.P. Ouyang: Mater. Charact., 2020, vol. 169, p. 110649.

    Article  CAS  Google Scholar 

  56. Y.S. Wu, Z. Liu, X.Z. Qin, C.S. Wang, and L.Z. Zhou: J. Alloys Compd., 2019, vol. 795, pp. 370–84.

    Article  CAS  Google Scholar 

  57. Y.S. Lou, J.W. Yoon, H. Huh, Q. Chao, and J.H. Song: Int. J. Mech. Sci., 2018, vol. 146–147, pp. 583–601.

    Article  Google Scholar 

  58. W.T. Jia, L.F. Ma, Q.C. Le, C.C. Zhi, and P.T. Liu: J. Alloys Compd., 2019, vol. 783, pp. 863–76.

    Article  CAS  Google Scholar 

  59. Q.L. Pan, B. Li, Y. Wang, Y.W. Zhang, and Z.M. Yin: Mater. Sci. Eng. A, 2013, vol. 585, pp. 371–78.

    Article  CAS  Google Scholar 

  60. Y.C. Zhu, W.D. Zeng, F.S. Zhang, Y.Q. Zhao, X.M. Zhang, and K.X. Wang: Mater. Sci. Eng. A, 2012, vol. 553, pp. 112–18.

    Article  CAS  Google Scholar 

  61. T.V. Pirtovšek, G. Kugler, M. Godec, and M. Terčelj: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3797–808.

    Article  CAS  Google Scholar 

  62. G.A. He, F. Liu, J.Y. Si, C. Yang, and L. Jiang: Mater. Des., 2015, vol. 87, pp. 256–65.

    Article  CAS  Google Scholar 

  63. Y. Han, H. Wu, W. Zhang, D.N. Zou, G.W. Liu, and G.J. Qiao: Mater. Des., 2015, vol. 69, pp. 230–40.

    Article  CAS  Google Scholar 

  64. D. Jia, W.R. Sun, D.S. Xu, and F. Liu: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1851–59.

    Article  CAS  Google Scholar 

  65. H.B. Zhang, K.F. Zhang, S.S. Jiang, H.P. Zhou, C.H. Zhao, and X.L. Yang: J. Alloys Compd., 2015, vol. 623, pp. 374–85.

    Article  CAS  Google Scholar 

  66. J.H. Zhao, Y.L. Deng, J.G. Tang, and J. Zhang: J. Alloys Compd., 2019, vol. 809, p. 151788.

    Article  CAS  Google Scholar 

  67. E.X. Pu, W.J. Zheng, J.Z. Xiang, Z.G. Song, and J. Li: Mater. Sci. Eng. A, 2014, vol. 598, pp. 174–82.

    Article  CAS  Google Scholar 

  68. D.L. Zhu, M. Zhang, and Y. Wang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1662–73.

    Article  CAS  Google Scholar 

  69. Z.J. Shao, Y. Li, B. Zhou, X.C. He, S.Z. Zhang, and L. Xu: Mater. Charact., 2020, vol. 165, p. 110376.

    Article  CAS  Google Scholar 

  70. Y. Cao, H.S. Di, J.Q. Zhang, J.C. Zhang, T.J. Ma, and R.D.K. Misra: Mater. Sci. Eng. A, 2013, vol. 585, pp. 71–85.

    Article  CAS  Google Scholar 

  71. D. Jia, W.R. Sun, D.S. Xu, L. Yu, X. Xin, W.H. Zhang, and F. Qi: J. Alloys Compd., 2019, vol. 787, pp. 196–205.

    Article  CAS  Google Scholar 

  72. Y.S. Hao, J. Li, W.C. Liu, W.N. Zhang, and Z.Y. Liu: J. Iron Steel Res. Int., 2019, vol. 26, pp. 1080–87.

    Article  CAS  Google Scholar 

  73. R.L. Goetz and S.L. Semiatin: J. Mater. Eng. Perform., 2001, vol. 10, pp. 710–17.

    Article  CAS  Google Scholar 

  74. J.Q. Zhang, H.S. Di, X.Y. Wang, Y. Cao, J.C. Zhang, and T.J. Ma: Mater. Des., 2013, vol. 44, pp. 354–64.

    Article  CAS  Google Scholar 

  75. S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, and U. Borah: J. Alloys Compd., 2016, vol. 681, pp. 28–42.

    Article  CAS  Google Scholar 

  76. J.D. Robson, D.T. Henry, and B. Davis: Acta Mater., 2009, vol. 57, pp. 2739–47.

    Article  CAS  Google Scholar 

  77. H. Yu, H.P. Sung, S.Y. Bong, M.K. Young, S.Y. Hua, and S.P. Sung: Mater. Sci. Eng. A, 2013, vol. 583, pp. 25–35.

    Article  CAS  Google Scholar 

  78. M.Z. Bian, X.S. Huang, and Y. Chino: Acta Mater., 2021, vol. 220, p. 117328.

    Article  CAS  Google Scholar 

  79. S.L. Liang, F. Fazeli, and H.S. Zurob: Mater. Sci. Eng. A, 2019, vol. 765, p. 138324.

    Article  CAS  Google Scholar 

  80. P. Mannan, G. Casillas, and E.V. Pereloma: Mater. Sci. Eng. A, 2017, vol. 700, pp. 116–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the National Natural Science Foundation of China [Grant Nos. 51774074 and U1960203], Fundamental Research Funds for the Central Universities [Grant Nos. N2125017 and N2025014], Talent Project of Revitalizing Liaoning (Grant No. XLYC1902046), China National Postdoctoral Program for Innovative Talents [Grant No. BX20200076], and Program of Introducing Talents of Discipline to Universities (Grant No. B21001). Special thanks are due to the instrumental analysis from Analytical and Testing Centre, Northeastern University

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Bing Li or Hao Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, WC., Li, HB., Feng, H. et al. High-Temperature Annealing Significantly Enhances Intrinsic Hot Workability of the As-cast High-Nitrogen M42 High-Speed Steel. Metall Mater Trans A 53, 2426–2451 (2022). https://doi.org/10.1007/s11661-022-06673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06673-7

Navigation